Einleitung

Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.

41 Minuten Erklärungen in 13 Aufgaben von Koonys Schule.

Aufgaben

1

$3\sqrt{2} + 4\sqrt{2}$

$9\sqrt{3} - 7\sqrt{3}$

$12\sqrt{11} + 5\sqrt{11}$

$4\sqrt{6} + 3\sqrt{6} - 2\sqrt{6}$

2

$4\sqrt{x} + 3\sqrt{x}$

$14\sqrt{x} - 9\sqrt{x}$

$2\sqrt{a}+3\sqrt{a} - \sqrt{a}$

$3\sqrt{x} - 2\sqrt{x} + 4\sqrt{x}$

3

$4\sqrt{3} + 2\sqrt{5} - 2\sqrt{3} + 8\sqrt{5}$

$6\sqrt{7} + 5\sqrt{2} - 3\sqrt{2} + 8\sqrt{7}$

$4\sqrt{11} + 3\sqrt{13} - \sqrt{11}- 4\sqrt{11}$

$9\sqrt{17} + 3\sqrt{21} - 14\sqrt{21} + 6\sqrt{17}$

4

$5\sqrt{x} + 2\sqrt{y} - 3\sqrt{x} - 4\sqrt{y}$

$5\sqrt{a} + 6\sqrt{b} - 8\sqrt{b} + 7\sqrt{a}$

$8\sqrt{2x} - 7\sqrt{3y} + 5\sqrt{2x} - 3\sqrt{3y}$

$12\sqrt{p} - 3\sqrt{3q} - 5\sqrt{3q} - 6\sqrt{p}$

5

$5\sqrt{a}- ( 7\sqrt{b} + 3\sqrt{a}) - \sqrt{a}$

$5\sqrt{x} - (3\sqrt{x} + \sqrt{y}) - (\sqrt{x} + 2\sqrt{y})$

$-(\sqrt{2a} + 7\sqrt{3b}) - (4\sqrt{2a} - 3\sqrt{3b})$

$\sqrt{x} - (2\sqrt{y} + 3\sqrt{z}) - (\sqrt{x} - \sqrt{y} - \sqrt{z})$

6

$\sqrt{8}\cdot\sqrt{2}$

$\sqrt{12}\cdot\sqrt{3}$

$\sqrt{12,5}\cdot\sqrt{2}$

$\sqrt{18}\cdot\sqrt{2}$

7

$\sqrt{5a}\cdot\sqrt{20a}$

$\sqrt{2a^2}\cdot\sqrt{18a^2}$

$\sqrt{72k} \cdot\sqrt{2k}$

$\sqrt{12x}\cdot\sqrt{3x^3}$

8

$\sqrt{\frac{1}{2}m}\cdot\sqrt{32m}$

$\sqrt{\frac{3}{4}x}\cdot\sqrt{\frac{3}{16}x}$

$\sqrt{0,18a}\cdot\sqrt{2a}$

$\sqrt{20y}\cdot\sqrt{1,8y}$

9

$\frac{\sqrt{72}}{\sqrt{2}}$

$\frac{\sqrt{125}}{\sqrt{5}}$

$\frac{\sqrt{20}}{\sqrt{\frac{4}{5}}}$

$\frac{\sqrt{\frac{1}{3}}}{\sqrt{\frac{3}{4}}}$

10

$\frac{\sqrt{x^3}}{\sqrt{x}}$

$\frac{\sqrt{\frac{a^2}{b}}}{\sqrt{b}}$

$\frac{\sqrt{xy}}{\sqrt{\frac{x}{y}}}$

$\frac{\sqrt{x^2 y^3}}{\sqrt{y}}$

11

$(\sqrt{12} + \sqrt{3})\sqrt{3}$

$\sqrt{2}(\sqrt{18} + \sqrt{32})$

$\sqrt{5}(\sqrt{5} + \sqrt{125})$

$\sqrt{6}(\sqrt{54} + \sqrt{6})$

$(\sqrt{32x} + \sqrt{8x})\sqrt{0,5x}$

$\sqrt{0,2a}\cdot(\sqrt{5a} - \sqrt{80a})$

12

$(3 + \sqrt{5})(3-\sqrt{5})$

$(\sqrt{8} - \sqrt{3})(\sqrt{8} + \sqrt{3})$

$(\sqrt{2} + \sqrt{7})(\sqrt{2} - \sqrt{7})$

$(\sqrt{12} + 3)(\sqrt{12} - 3)$

$(\sqrt{x^3} - \sqrt{2y})(\sqrt{x^3} + \sqrt{2y})$

$(\sqrt{5x^5} + \sqrt{2})(\sqrt{5x^5} - \sqrt{2})$

13

$(\sqrt{a} + \sqrt{b})^2$

$(3 - \sqrt{2})^2$

$(\sqrt{8} + \sqrt{3})^2$

$(\sqrt{5} - \sqrt{b})^2$

$(2\sqrt{a} - 3\sqrt{b})^2$

$(3\sqrt{x} + 2\sqrt{y})^2$

PDF zum Drucken

Weitere Arbeitsblätter

Abschlussarbeit Klasse 9 mit Taschenrechner

42 min, 6 Aufgaben #2853

Aufgaben quer durch die 9. Klasse. Statistiken, lineare Gleichungen, Funktionen, Textgleichungen, Strahlensätze, Prozentrechnung und Flächeninhalten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Ikarus Abitur GK Berlin 2016

64 min, 6 Aufgaben #1980

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Kartenspiel Abitur GK Berlin 2016

46 min, 8 Aufgaben #1990

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Klassenarbeit - Rechnen mit Wurzeln

27 min, 9 Aufgaben #0993

Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.

Abschlussarbeit Klasse 9 mit Taschenrechner

38 min, 3 Aufgaben #2852

Aufgaben quer durch die 9. Klasse. Statistik, Diagramme, Volumenberechnungen am Kegel, Funktionen und mehr im Koordinatensystem. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum