Einleitung

Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.

27 Minuten Erklärungen in 9 Aufgaben von Koonys Schule.

Aufgaben

1

Vereinfache so weit wie möglich.

$\left(\sqrt{2a}\right)^2$

$\sqrt{a^4}$

$\sqrt{36r^6s^2}$

2

Fasse so weit wie möglich zusammen.

$3\sqrt{2} + 2\sqrt{3} - \sqrt{2} + \sqrt{3} - 8\sqrt{2}$

$5\sqrt{a} - (7\sqrt{b} + 3\sqrt{a}) -\sqrt{a}$

3

Vereinfache mit Hilfe der Wurzelgesetze.

$\sqrt{6xy^3}\cdot\sqrt{24x^3y}$

$\frac{\sqrt{x^2y^3}}{\sqrt{y}}$

4

Vereinfache durch teilweises Wurzelziehen.

$\sqrt{45}$

$\sqrt{54xy^3}$

5

Vereinfache durch teilweises Wurzelziehen. Fasse dann so weit wie möglich zusammen.

$3\sqrt{169x} - 4\sqrt{225y} + 9\sqrt{196x} - 7\sqrt{400y}$

6

Vereinfache soweit wie möglich. (Ausmultiplizieren)

$\sqrt{4b}\cdot(\sqrt{a} + \sqrt{b})$

7

Vereinfache soweit wie möglich. (binomische Formeln)

$\left(\sqrt{5} + \sqrt{11}\right)^2$

$\left(\sqrt{6} - \sqrt{24}\right)^2$

$\left(\sqrt{12} + 3\right)\cdot\left(\sqrt{12} - 3\right)$

$\sqrt{25x^2 - 80xy + 64y^2}$

8

Mache den Nenner rational. (Beseitige die Wurzeln im Nenner.)

$\frac{8}{\sqrt{14}}$

$\frac{\sqrt{18}}{\sqrt{3} + \sqrt{2}}$

9

Bestimme die Lösungsmenge L der Wurzelgleichung. (mit Probe)
$$\sqrt{x^2 - 11} = 5$$

PDF zum Drucken

Weitere Arbeitsblätter

Terme und Gleichungen in Texten

57 min, 10 Aufgaben #1300

Das Arbeitsblatt besteht aus 3 Teilen. Aufgestellt werden müssen Terme (1), einfache Gleichungen (2), schwierige Gleichungen (3).

Bernoulli-Ketten

43 min, 4 Aufgaben #1700

Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.

Klassenarbeit binomische Formeln

33 min, 8 Aufgaben #3132

Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.

Pythagoras - Anwendungen

49 min, 6 Aufgaben #0040

Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.

Test über Vorkenntnisse zu ganzrationalen Funktionen

31 min, 4 Aufgaben #1515

Originaler Test mit 40 erreichbaren Punkten.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum