Einleitung

Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.

27 Minuten Erklärungen in 9 Aufgaben von Koonys Schule.

Aufgaben

1

Vereinfache so weit wie möglich.

$\left(\sqrt{2a}\right)^2$

$\sqrt{a^4}$

$\sqrt{36r^6s^2}$

2

Fasse so weit wie möglich zusammen.

$3\sqrt{2} + 2\sqrt{3} - \sqrt{2} + \sqrt{3} - 8\sqrt{2}$

$5\sqrt{a} - (7\sqrt{b} + 3\sqrt{a}) -\sqrt{a}$

3

Vereinfache mit Hilfe der Wurzelgesetze.

$\sqrt{6xy^3}\cdot\sqrt{24x^3y}$

$\frac{\sqrt{x^2y^3}}{\sqrt{y}}$

4

Vereinfache durch teilweises Wurzelziehen.

$\sqrt{45}$

$\sqrt{54xy^3}$

5

Vereinfache durch teilweises Wurzelziehen. Fasse dann so weit wie möglich zusammen.

$3\sqrt{169x} - 4\sqrt{225y} + 9\sqrt{196x} - 7\sqrt{400y}$

6

Vereinfache soweit wie möglich. (Ausmultiplizieren)

$\sqrt{4b}\cdot(\sqrt{a} + \sqrt{b})$

7

Vereinfache soweit wie möglich. (binomische Formeln)

$\left(\sqrt{5} + \sqrt{11}\right)^2$

$\left(\sqrt{6} - \sqrt{24}\right)^2$

$\left(\sqrt{12} + 3\right)\cdot\left(\sqrt{12} - 3\right)$

$\sqrt{25x^2 - 80xy + 64y^2}$

8

Mache den Nenner rational. (Beseitige die Wurzeln im Nenner.)

$\frac{8}{\sqrt{14}}$

$\frac{\sqrt{18}}{\sqrt{3} + \sqrt{2}}$

9

Bestimme die Lösungsmenge L der Wurzelgleichung. (mit Probe)
$$\sqrt{x^2 - 11} = 5$$

PDF zum Drucken

Weitere Arbeitsblätter

Lineare Gleichungen

58 min, 5 Aufgaben #3738

Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer. Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.

Textgleichungen mit Brüchen für Profis 2v3

31 min, 7 Aufgaben #1342

Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.

Lineare Funktionen

54 min, 6 Aufgaben #3800

Dieses Arbeitsblatt führt an lineare Funktionen heran. Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.

Anwendungsaufgaben Dreiecksmessung

59 min, 5 Aufgaben #7020

Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.

Wahrscheinlichkeiten

14 min, 2 Aufgaben #7390

Zwei originale Aufgaben der mittleren Schulabschluss Prüfung (MSA) von 2012 und 2014 aus Berlin.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum