Einleitung

Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.

27 Minuten Erklärungen in 9 Aufgaben von Koonys Schule.

Aufgaben

1

Vereinfache so weit wie möglich.

$\left(\sqrt{2a}\right)^2$

$\sqrt{a^4}$

$\sqrt{36r^6s^2}$

2

Fasse so weit wie möglich zusammen.

$3\sqrt{2} + 2\sqrt{3} - \sqrt{2} + \sqrt{3} - 8\sqrt{2}$

$5\sqrt{a} - (7\sqrt{b} + 3\sqrt{a}) -\sqrt{a}$

3

Vereinfache mit Hilfe der Wurzelgesetze.

$\sqrt{6xy^3}\cdot\sqrt{24x^3y}$

$\frac{\sqrt{x^2y^3}}{\sqrt{y}}$

4

Vereinfache durch teilweises Wurzelziehen.

$\sqrt{45}$

$\sqrt{54xy^3}$

5

Vereinfache durch teilweises Wurzelziehen. Fasse dann so weit wie möglich zusammen.

$3\sqrt{169x} - 4\sqrt{225y} + 9\sqrt{196x} - 7\sqrt{400y}$

6

Vereinfache soweit wie möglich. (Ausmultiplizieren)

$\sqrt{4b}\cdot(\sqrt{a} + \sqrt{b})$

7

Vereinfache soweit wie möglich. (binomische Formeln)

$\left(\sqrt{5} + \sqrt{11}\right)^2$

$\left(\sqrt{6} - \sqrt{24}\right)^2$

$\left(\sqrt{12} + 3\right)\cdot\left(\sqrt{12} - 3\right)$

$\sqrt{25x^2 - 80xy + 64y^2}$

8

Mache den Nenner rational. (Beseitige die Wurzeln im Nenner.)

$\frac{8}{\sqrt{14}}$

$\frac{\sqrt{18}}{\sqrt{3} + \sqrt{2}}$

9

Bestimme die Lösungsmenge L der Wurzelgleichung. (mit Probe)
$$\sqrt{x^2 - 11} = 5$$

PDF zum Drucken

Weitere Arbeitsblätter

Extremwertaufgaben

80 min, 8 Aufgaben #1597

Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

Abschlussarbeit Klasse 9 ohne Taschenrechner

39 min, 8 Aufgaben #2850

Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Klassenarbeit Wachstum und Zerfall

38 min, 5 Aufgaben #6551

Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs. Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.

BBR - Vergleichsarbeit Mathematik

59 min, 14 Aufgaben #2508

Die Vergleichende Arbeit 2015 im Fach Mathematik zum Erwerb der Berufsbildungsreife bzw. des Hauptschulabschlusses. Bearbeitungszeit: 90 Minuten. Zugelassene Hilfsmittel: Formelübersicht und wissenschaftlicher nicht grafikfähiger Standard-Taschenrechner.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum