Einleitung
Aufgaben quer durch die 9. Klasse.
Statistik, Diagramme, Volumenberechnungen am Kegel, Funktionen und mehr im Koordinatensystem.
Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
38 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.
Aufgaben
Die folgende Tabelle zeigt den Wasserverbrauch eines Vier-Personen-Haushaltes in den Jahren 2000 und 2005.
| Jahr | Körperpflege | Toilette | Wäsche | Geschirr | Putzen | Sonstiges |
| 2000 | $ 106,56\,\mathrm{cm^3} $ | $ 83,52\,\mathrm{m^3} $ | $ 31,68\,\mathrm{m^3} $ | $ 28,80\,\mathrm{m^3} $ | $ 20,16\,\mathrm{m^3} $ | $ 17,28\,\mathrm{m^3} $ |
| 2005 | $ 91,84\,\mathrm{m^3} $ | $ 56,00\,\mathrm{m^3} $ | $ 29,12\,\mathrm{m^3} $ | $ 17,92\,\mathrm{m^3} $ | $ 15,68\,\mathrm{m^3} $ | $ 13,44\,\mathrm{m^3} $ |
Um wie viel Prozent liegt der Wasserverbrauch der Familie im Jahr 2005 unter dem des Jahres 2000?
Vergleiche die Anteile für die Toilettenbenutzung bezüglich des Gesamtverbrauches in den beiden Jahren.
Stelle die Anteile für den Wasserverbrauch des Jahres 2005 in einem Diagramm dar.
Zwei Lkw-Ladungen mit grobkörnigem Kies wurden zu einem kegelförmigen Haufen mit einer Höhe von $ 1,40\,\mathrm{m} $ und einem Grundkreisdurchmesser von $ 3,80\,\mathrm{m} $ aufgeschüttet.
Wie viel Kubikmeter Kies hatte eine Lkw-Ladung?
Bei einer zweiten Lieferung wurde die Höhe des Kieshaufens um $ 0,40\,\mathrm{m} $ größer. Der Grundflächendurchmesser vergrößert sich ebenfalls entsprechend der Zeichnung.
Wie viel Kubikmeter Kies sind bei der zweiten Lieferung dazu gekommen?

Berechne die Größe des Winkels $ \alpha $.
Zeichne im Intervall von $ 0 \le x \le 5 $ die beiden Funktionen $ y = f(x) = -x+2 $ und $ y = g(x) = (x-3)^2 - 3 $ in ein und dasselbe Koordinatensystem.
Gib die Koordinaten der Schnittpunkte $ A $ und $ B $ an.
Berechne die Länge der Strecke $ \overline{AB} $.
Spiegele $ \overline{AB} $ an der y-Achse. Es entsteht $ \overline{A'B'} $. Welches spezielle Viereck ist $ B'BAA' $?
Berechne den Umfang und den Flächeninhalt des Vierecks $ B'BAA' $.
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Ableitungsfunktion und ihre Anwendung
92 min, 12 Aufgaben #1590Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.
Klassenarbeit Terme und Gleichungen
26 min, 5 Aufgaben #3750Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.
Abzählverfahren
54 min, 7 Aufgaben #1650Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.
Lineare Gleichungen
58 min, 5 Aufgaben #3738Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer. Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.