Einleitung
Aufgaben quer durch die 9. Klasse.
Statistik, Diagramme, Volumenberechnungen am Kegel, Funktionen und mehr im Koordinatensystem.
Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
38 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.
Aufgaben
Die folgende Tabelle zeigt den Wasserverbrauch eines Vier-Personen-Haushaltes in den Jahren 2000 und 2005.
Jahr | Körperpflege | Toilette | Wäsche | Geschirr | Putzen | Sonstiges |
2000 | $ 106,56\,\mathrm{cm^3} $ | $ 83,52\,\mathrm{m^3} $ | $ 31,68\,\mathrm{m^3} $ | $ 28,80\,\mathrm{m^3} $ | $ 20,16\,\mathrm{m^3} $ | $ 17,28\,\mathrm{m^3} $ |
2005 | $ 91,84\,\mathrm{m^3} $ | $ 56,00\,\mathrm{m^3} $ | $ 29,12\,\mathrm{m^3} $ | $ 17,92\,\mathrm{m^3} $ | $ 15,68\,\mathrm{m^3} $ | $ 13,44\,\mathrm{m^3} $ |
Um wie viel Prozent liegt der Wasserverbrauch der Familie im Jahr 2005 unter dem des Jahres 2000?
Vergleiche die Anteile für die Toilettenbenutzung bezüglich des Gesamtverbrauches in den beiden Jahren.
Stelle die Anteile für den Wasserverbrauch des Jahres 2005 in einem Diagramm dar.
Zwei Lkw-Ladungen mit grobkörnigem Kies wurden zu einem kegelförmigen Haufen mit einer Höhe von $ 1,40\,\mathrm{m} $ und einem Grundkreisdurchmesser von $ 3,80\,\mathrm{m} $ aufgeschüttet.
Wie viel Kubikmeter Kies hatte eine Lkw-Ladung?
Bei einer zweiten Lieferung wurde die Höhe des Kieshaufens um $ 0,40\,\mathrm{m} $ größer. Der Grundflächendurchmesser vergrößert sich ebenfalls entsprechend der Zeichnung.
Wie viel Kubikmeter Kies sind bei der zweiten Lieferung dazu gekommen?
Berechne die Größe des Winkels $ \alpha $.
Zeichne im Intervall von $ 0 \le x \le 5 $ die beiden Funktionen $ y = f(x) = -x+2 $ und $ y = g(x) = (x-3)^2 - 3 $ in ein und dasselbe Koordinatensystem.
Gib die Koordinaten der Schnittpunkte $ A $ und $ B $ an.
Berechne die Länge der Strecke $ \overline{AB} $.
Spiegele $ \overline{AB} $ an der y-Achse. Es entsteht $ \overline{A'B'} $. Welches spezielle Viereck ist $ B'BAA' $?
Berechne den Umfang und den Flächeninhalt des Vierecks $ B'BAA' $.
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Übungen zur Differenzialrechnung
98 min, 8 Aufgaben #1560Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.
Klassenarbeit binomische Formeln
33 min, 8 Aufgaben #3132Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.
Lernkontrolle Wahrscheinlichkeitsrechnung
36 min, 4 Aufgaben #7392Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.
Polynomdivision und mittlere Änderungsrate
35 min, 6 Aufgaben #1551Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
Medikament Abitur GK Berlin 2016
53 min, 7 Aufgaben #1610Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016.