Einleitung
Aufgaben quer durch die 9. Klasse.
Statistik, Diagramme, Volumenberechnungen am Kegel, Funktionen und mehr im Koordinatensystem.
Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
38 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.
Aufgaben
Die folgende Tabelle zeigt den Wasserverbrauch eines Vier-Personen-Haushaltes in den Jahren 2000 und 2005.
| Jahr | Körperpflege | Toilette | Wäsche | Geschirr | Putzen | Sonstiges |
| 2000 | $ 106,56\,\mathrm{cm^3} $ | $ 83,52\,\mathrm{m^3} $ | $ 31,68\,\mathrm{m^3} $ | $ 28,80\,\mathrm{m^3} $ | $ 20,16\,\mathrm{m^3} $ | $ 17,28\,\mathrm{m^3} $ |
| 2005 | $ 91,84\,\mathrm{m^3} $ | $ 56,00\,\mathrm{m^3} $ | $ 29,12\,\mathrm{m^3} $ | $ 17,92\,\mathrm{m^3} $ | $ 15,68\,\mathrm{m^3} $ | $ 13,44\,\mathrm{m^3} $ |
Um wie viel Prozent liegt der Wasserverbrauch der Familie im Jahr 2005 unter dem des Jahres 2000?
Vergleiche die Anteile für die Toilettenbenutzung bezüglich des Gesamtverbrauches in den beiden Jahren.
Stelle die Anteile für den Wasserverbrauch des Jahres 2005 in einem Diagramm dar.
Zwei Lkw-Ladungen mit grobkörnigem Kies wurden zu einem kegelförmigen Haufen mit einer Höhe von $ 1,40\,\mathrm{m} $ und einem Grundkreisdurchmesser von $ 3,80\,\mathrm{m} $ aufgeschüttet.
Wie viel Kubikmeter Kies hatte eine Lkw-Ladung?
Bei einer zweiten Lieferung wurde die Höhe des Kieshaufens um $ 0,40\,\mathrm{m} $ größer. Der Grundflächendurchmesser vergrößert sich ebenfalls entsprechend der Zeichnung.
Wie viel Kubikmeter Kies sind bei der zweiten Lieferung dazu gekommen?

Berechne die Größe des Winkels $ \alpha $.
Zeichne im Intervall von $ 0 \le x \le 5 $ die beiden Funktionen $ y = f(x) = -x+2 $ und $ y = g(x) = (x-3)^2 - 3 $ in ein und dasselbe Koordinatensystem.
Gib die Koordinaten der Schnittpunkte $ A $ und $ B $ an.
Berechne die Länge der Strecke $ \overline{AB} $.
Spiegele $ \overline{AB} $ an der y-Achse. Es entsteht $ \overline{A'B'} $. Welches spezielle Viereck ist $ B'BAA' $?
Berechne den Umfang und den Flächeninhalt des Vierecks $ B'BAA' $.
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Berechnungen an Körpern
62 min, 6 Aufgaben #9598Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.
Gartenhaus Abitur GK Berlin 2016
62 min, 6 Aufgaben #1981Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Klassenarbeit Terme und Gleichungen
26 min, 5 Aufgaben #3750Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.
Abschlussarbeit Klasse 9 ohne Taschenrechner
42 min, 11 Aufgaben #2851Aufgaben quer durch die 9. Klasse für Profis. Potenzrechnung, Terme, Gleichungen umstellen, Geometrie, Brüche, Maßstäbe, Funktionen und Kombinatorik. Alles ohne Taschenrechner! Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
Übungsaufgaben zur Wahrscheinlichkeitsrechnung
29 min, 4 Aufgaben #1656Gewinnerwartung und Wahrscheinlichkeiten bei einem bzw. zwei Würfeln. Die Aufgaben beschäftigen sich hauptsächlich mit Baumdiagrammen und damit, aus dem Text herauszufinden was genau man zählen muss.