Einleitung

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

46 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

Nina und Max treffen sich zu einem Spiel mit 32 Karten. 16 der 32 Karten zeigen auf einer Seite die Farbe rot, die anderen 16 zeigen die Farbe Schwarz. Anhand ihrer Rückseiten sind die Karten nicht zu unterscheiden.

1

Zunächst mischt Nina und nimmt 3 Karten vom Stapel, in dem die 32 Karten verdeckt liegen.
Berechnen Sie die Wahrscheinlichkeit dafür, dass die 3 Karten die gleiche Farbe haben.
Berechnen Sie die Wahrscheinlichkeit dafür, dass wenigstens eine rote Karte unter den 3 gezogenen Karten ist.

Alle 32 Karten werden neu gemischt, das Spiel beginnt. Das Spiel besteht aus $ n $ Runden.

In jeder Runde zieht ein Spieler eine Karte, deckt sie auf, steckt sie wieder in den Stapel und mischt ihn.

Zieht der Spielpartner danach die gleiche Farbe, hat er die erste Runde gewonnen.

Nach jeder Runde wird die Reihenfolge der Ziehenden gewechselt.

2

Begründen Sie, dass für die Wahrscheinlichkeit des Ereignisses

E: Wer zuerst zieht, gewinnt die Runde gilt: P($ E $) = 0,5.

3

Es werden 10 Runden gespielt.

Berechnen Sie die Wahrscheinlichkeit der folgenden Ereignisse:

Nina gewinnt die ersten 3 Runden.

Nina gewinnt mindestens 5 der 10 Runden.

Nina gewinnt die erste Runde und von den restlichen neun noch genau 5.

Nachdem Nina und Max 15 Runden gespielt haben, sieht der Zettel mit den Ergebnissen wie rechts abgebildet aus. Sie beschließen, noch genau 5 Runden zu machen. Wer dann mehr als die Hälfte der 20 Runden gewonnen hat, ist Gewinner des Spiels.

Ein Bild aus der Koonys Schule Aufgabe 67915.

4

Berechnen Sie die Wahrscheinlichkeit dafür, dass Max noch genau 4 der 5 Runden gewinnt.

Berechnen Sie die Wahrscheinlichkeit dafür, dass Nina das Spiel gewinnt.

5

Am nächsten Tag wird das Spiel verändert. Nun wird eine Karte gezogen und offen auf den Tisch gelegt. Wer als Zweiter zieht und eine Karte derselben Farbe gezogen hat, der hat die Runde gewonnen. Andernfalls hat gewonnen, wer die erste Karte gezogen hat.
Das Spiel besteht aus $ m $ Runden.

Begründen Sie anhand einer geeigneten Rechnung, dass diese Spielvariante nur dann fair ist, wenn die Anzahl $ m $ der Runden gerade ist.

PDF zum Drucken

Weitere Arbeitsblätter

Ebenen - Übungsaufgaben

52 min, 6 Aufgaben #1933

Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.

Klausur Differentialrechnung

42 min, 5 Aufgaben #1565

Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.

Kepler und Gravitation

81 min, 8 Aufgaben #6030

Zwei Massen ziehen sich, je nach ihrer Entfernung voneinander, an. Eine Formel um auszurechnen wie stark gibt es natürlich auch. Damit einhergehend gibt es Aufgaben, die gelöst werden können. Zum Beispiel Geschwindigkeiten von Raketen und Satelliten oder die Masse der Sonne.

Vermischte Übungen MSA

36 min, 6 Aufgaben #1290

Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.

Studienkolleg Vektoren, SS 2017

127 min, 10 Aufgaben #1818

Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum