Einleitung

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

46 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

Nina und Max treffen sich zu einem Spiel mit 32 Karten. 16 der 32 Karten zeigen auf einer Seite die Farbe rot, die anderen 16 zeigen die Farbe Schwarz. Anhand ihrer Rückseiten sind die Karten nicht zu unterscheiden.

1

Zunächst mischt Nina und nimmt 3 Karten vom Stapel, in dem die 32 Karten verdeckt liegen.
Berechnen Sie die Wahrscheinlichkeit dafür, dass die 3 Karten die gleiche Farbe haben.
Berechnen Sie die Wahrscheinlichkeit dafür, dass wenigstens eine rote Karte unter den 3 gezogenen Karten ist.

Alle 32 Karten werden neu gemischt, das Spiel beginnt. Das Spiel besteht aus $ n $ Runden.

In jeder Runde zieht ein Spieler eine Karte, deckt sie auf, steckt sie wieder in den Stapel und mischt ihn.

Zieht der Spielpartner danach die gleiche Farbe, hat er die erste Runde gewonnen.

Nach jeder Runde wird die Reihenfolge der Ziehenden gewechselt.

2

Begründen Sie, dass für die Wahrscheinlichkeit des Ereignisses

E: Wer zuerst zieht, gewinnt die Runde gilt: P($ E $) = 0,5.

3

Es werden 10 Runden gespielt.

Berechnen Sie die Wahrscheinlichkeit der folgenden Ereignisse:

Nina gewinnt die ersten 3 Runden.

Nina gewinnt mindestens 5 der 10 Runden.

Nina gewinnt die erste Runde und von den restlichen neun noch genau 5.

Nachdem Nina und Max 15 Runden gespielt haben, sieht der Zettel mit den Ergebnissen wie rechts abgebildet aus. Sie beschließen, noch genau 5 Runden zu machen. Wer dann mehr als die Hälfte der 20 Runden gewonnen hat, ist Gewinner des Spiels.

Ein Bild aus der Koonys Schule Aufgabe 67915.

4

Berechnen Sie die Wahrscheinlichkeit dafür, dass Max noch genau 4 der 5 Runden gewinnt.

Berechnen Sie die Wahrscheinlichkeit dafür, dass Nina das Spiel gewinnt.

5

Am nächsten Tag wird das Spiel verändert. Nun wird eine Karte gezogen und offen auf den Tisch gelegt. Wer als Zweiter zieht und eine Karte derselben Farbe gezogen hat, der hat die Runde gewonnen. Andernfalls hat gewonnen, wer die erste Karte gezogen hat.
Das Spiel besteht aus $ m $ Runden.

Begründen Sie anhand einer geeigneten Rechnung, dass diese Spielvariante nur dann fair ist, wenn die Anzahl $ m $ der Runden gerade ist.

PDF zum Drucken

Weitere Arbeitsblätter

Terme und Gleichungen - Arbeit

0 min, 9 Aufgaben #TUGAA

41 Punkte Klassenarbeit für die 8. Klasse: Umfassendes Arbeitsblatt zu Termen und Gleichungen. Enthält Aufgaben zur Vereinfachung von Termen, Multiplikation, Anwendung der binomischen Formeln, Klammerauflösung, Bestimmung von Lösungsmengen und Sachaufgaben. Perfekt zur Überprüfung und Vertiefung algebraischer Fähigkeiten.

Anwendungsaufgaben Dreiecksmessung

59 min, 5 Aufgaben #7020

Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.

Hemden mit Mängeln Abitur LK Berlin 2011

32 min, 6 Aufgaben #1720

Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.

Glücksrad mit Urne - Übungsaufgabe Stochastik LK

21 min, 6 Aufgaben #1710

Eine Übungsaufgabe, die Urne und Glücksrad kombiniert. Nebst Baumdiagrammen, Bernoulli und der summierten Binomialverteilung werden auch Gewinnerwartung und Prozentrechnung beim Kreis benötigt.

Übungsaufgaben zur Wahrscheinlichkeitsrechnung

29 min, 4 Aufgaben #1656

Gewinnerwartung und Wahrscheinlichkeiten bei einem bzw. zwei Würfeln. Die Aufgaben beschäftigen sich hauptsächlich mit Baumdiagrammen und damit, aus dem Text herauszufinden was genau man zählen muss.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum