Einleitung

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

62 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

Ein Gartenhaus hat als Grundfläche ein Fünfeck mit den Eckpunkten $ \RPUNKT{G_0}{0}{0}{0} $, $ \mathrm{G_1} $, $ \RPUNKT{G_2}{2}{3}{0} $, $ \mathrm{G_3} $ und $ \RPUNKT{G_4}{-1}{1}{0} $ (s. Abbildung). Das Dach des Gartenhauses ist eine quadratische Pyramide mit den Eckpunkten $ \mathrm{D_1} $, $ \mathrm{D_2} $ und $ \mathrm{D_3} $, die in 2m Höhe genau senkrecht über $ \mathrm{G_1} $, $ \mathrm{G_2} $ und $ \mathrm{G_3} $ liegen. Der vierte Eckpunkt $ \mathrm{D_4} $ liegt nicht über einem Eckpunkt der Grundfläche.

Es gilt: 1 LE = 1 m.

Ein Bild aus der Koonys Schule Aufgabe aec76.

1

Geben Sie die Koordinaten der Punkte $ \mathrm{G_1} $, $ \mathrm{G_3} $ und $ \mathrm{D_2} $ an.

Weisen Sie nach, dass $ \RPUNKT{D_1}{2}{0}{2} $ auf der Geraden

$ g: \vec{x} = \RVEKTOR{c}{5}{-3}{0,8} + r\cdot \RVEKTOR{c}{1}{-1}{-0,4} $; $ r \in \RR $ liegt.

Die Dachspitze hat die Koordinaten $ \RPUNKT{S}{0,5}{1,5}{h} $ und liegt auch auf der
Geraden $ g $.
Berechnen Sie die Höhe $ h $ des Gartenhauses.

( Zur Kontrolle: $ \RPUNKT{S}{0,5}{1,5}{2,6} $.)

Ein Bild aus der Koonys Schule Aufgabe 14080.

2

Die Firstkanten des Daches sind die vier Kanten der Pyramide, die sich im Punkt S treffen.

Berechnen Sie die Länge einer Firstkante und die Größe des Winkels, den zwei benachbarte Firstkanten an der Spitze S einschließen.

3

Das Dach soll mit Dachziegeln gedeckt werden.
Ein Paket Dachziegel reicht für $ 3,1\,\mathrm{m^2} $ Dachfläche.

Untersuchen Sie, ob drei Pakete ausreichend sind, um das gesamte Dach zu decken.

4

Zu einer bestimmten Tageszeit fällt das Sonnenlicht parallel zur Dachkante $ \overrightarrow{D_1 S} $ ein und erzeugt von $ \mathrm{D_1} $ und S einen gemeinsamen Schattenpunkt $ \mathrm{S_1} $ in der x-y-Ebene.

Berechnen Sie die Koordinaten von $ \mathrm{S_1} $.
( Zur Kontrolle: $ \RPUNKT{S_1}{7}{-5}{0} $.)

Der Schattenpunkt von $ \mathrm{D_2} $ ist der Punkt $ \RPUNKT{S_2}{7}{-2}{0} $.

Weisen Sie nach, dass die Schattenlinie $ \overrightarrow{S_1 S_2} $ parallel zur Dachkante $ \overrightarrow{D_1 D_2} $ verläuft.

5

Wählen Sie zwei geeignete Eckpunkte des Daches so aus, dass deren Schattenlinie senkrecht zu $ \overrightarrow{S_1 S_2} $ verläuft. Begründen Sie Ihre Wahl.

PDF zum Drucken

Weitere Arbeitsblätter

Prozentrechnung - Grundlagen

81 min, 5 Aufgaben #0100

Hier geht es um pures Rechnen. Zunächst wird der Zusammenhang von Prozenten und Brüchen geübt und im Anschluss die drei grundlegenden Aufgabentypen der Prozentrechnung.

Gauß Verfahren

84 min, 7 Aufgaben #1777

Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.

Vermischte Übungen MSA

36 min, 6 Aufgaben #1290

Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.

Abschlussarbeit Klasse 9 ohne Taschenrechner

39 min, 8 Aufgaben #2850

Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Rechnen mit Brüchen

53 min, 13 Aufgaben #0660

13 mal 5 Aufgaben zum Addieren, Subtrahieren, Multiplizieren und Dividieren von Brüchen. Täglich etwas machen und 2 Wochen später ist man besser. :)

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum