Einleitung

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

62 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

Ein Gartenhaus hat als Grundfläche ein Fünfeck mit den Eckpunkten $ \RPUNKT{G_0}{0}{0}{0} $, $ \mathrm{G_1} $, $ \RPUNKT{G_2}{2}{3}{0} $, $ \mathrm{G_3} $ und $ \RPUNKT{G_4}{-1}{1}{0} $ (s. Abbildung). Das Dach des Gartenhauses ist eine quadratische Pyramide mit den Eckpunkten $ \mathrm{D_1} $, $ \mathrm{D_2} $ und $ \mathrm{D_3} $, die in 2m Höhe genau senkrecht über $ \mathrm{G_1} $, $ \mathrm{G_2} $ und $ \mathrm{G_3} $ liegen. Der vierte Eckpunkt $ \mathrm{D_4} $ liegt nicht über einem Eckpunkt der Grundfläche.

Es gilt: 1 LE = 1 m.

Ein Bild aus der Koonys Schule Aufgabe aec76.

1

Geben Sie die Koordinaten der Punkte $ \mathrm{G_1} $, $ \mathrm{G_3} $ und $ \mathrm{D_2} $ an.

Weisen Sie nach, dass $ \RPUNKT{D_1}{2}{0}{2} $ auf der Geraden

$ g: \vec{x} = \RVEKTOR{c}{5}{-3}{0,8} + r\cdot \RVEKTOR{c}{1}{-1}{-0,4} $; $ r \in \RR $ liegt.

Die Dachspitze hat die Koordinaten $ \RPUNKT{S}{0,5}{1,5}{h} $ und liegt auch auf der
Geraden $ g $.
Berechnen Sie die Höhe $ h $ des Gartenhauses.

( Zur Kontrolle: $ \RPUNKT{S}{0,5}{1,5}{2,6} $.)

Ein Bild aus der Koonys Schule Aufgabe 14080.

2

Die Firstkanten des Daches sind die vier Kanten der Pyramide, die sich im Punkt S treffen.

Berechnen Sie die Länge einer Firstkante und die Größe des Winkels, den zwei benachbarte Firstkanten an der Spitze S einschließen.

3

Das Dach soll mit Dachziegeln gedeckt werden.
Ein Paket Dachziegel reicht für $ 3,1\,\mathrm{m^2} $ Dachfläche.

Untersuchen Sie, ob drei Pakete ausreichend sind, um das gesamte Dach zu decken.

4

Zu einer bestimmten Tageszeit fällt das Sonnenlicht parallel zur Dachkante $ \overrightarrow{D_1 S} $ ein und erzeugt von $ \mathrm{D_1} $ und S einen gemeinsamen Schattenpunkt $ \mathrm{S_1} $ in der x-y-Ebene.

Berechnen Sie die Koordinaten von $ \mathrm{S_1} $.
( Zur Kontrolle: $ \RPUNKT{S_1}{7}{-5}{0} $.)

Der Schattenpunkt von $ \mathrm{D_2} $ ist der Punkt $ \RPUNKT{S_2}{7}{-2}{0} $.

Weisen Sie nach, dass die Schattenlinie $ \overrightarrow{S_1 S_2} $ parallel zur Dachkante $ \overrightarrow{D_1 D_2} $ verläuft.

5

Wählen Sie zwei geeignete Eckpunkte des Daches so aus, dass deren Schattenlinie senkrecht zu $ \overrightarrow{S_1 S_2} $ verläuft. Begründen Sie Ihre Wahl.

PDF zum Drucken

Weitere Arbeitsblätter

Klammern auflösen

51 min, 5 Aufgaben #3335

Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz). Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.

Wochenübung mit Klammern und Gleichungen

29 min, 7 Aufgaben #1234

7 Aufgaben für 7 Tage. Es müssen Klammern aufgelöst, Terme zusammengefasst und vor allem Gleichungen gelöst werden. Dabei treten unter anderem auch mal Brüche, die binomischen Formeln und die pq-Formel mit auf.

Anwendungsaufgaben Dreiecksmessung

59 min, 5 Aufgaben #7020

Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.

Ebenen - Übungsaufgaben

52 min, 6 Aufgaben #1933

Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.

Klassenarbeit Wachstum und Zerfall

38 min, 5 Aufgaben #6551

Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs. Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum