Einleitung
Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
62 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Ein Gartenhaus hat als Grundfläche ein Fünfeck mit den Eckpunkten $ \RPUNKT{G_0}{0}{0}{0} $, $ \mathrm{G_1} $, $ \RPUNKT{G_2}{2}{3}{0} $, $ \mathrm{G_3} $ und $ \RPUNKT{G_4}{-1}{1}{0} $ (s. Abbildung). Das Dach des Gartenhauses ist eine quadratische Pyramide mit den Eckpunkten $ \mathrm{D_1} $, $ \mathrm{D_2} $ und $ \mathrm{D_3} $, die in 2m Höhe genau senkrecht über $ \mathrm{G_1} $, $ \mathrm{G_2} $ und $ \mathrm{G_3} $ liegen. Der vierte Eckpunkt $ \mathrm{D_4} $ liegt nicht über einem Eckpunkt der Grundfläche.
Es gilt: 1 LE = 1 m.

Geben Sie die Koordinaten der Punkte $ \mathrm{G_1} $, $ \mathrm{G_3} $ und $ \mathrm{D_2} $ an.
Weisen Sie nach, dass $ \RPUNKT{D_1}{2}{0}{2} $ auf der Geraden
$ g: \vec{x} = \RVEKTOR{c}{5}{-3}{0,8} + r\cdot \RVEKTOR{c}{1}{-1}{-0,4} $; $ r \in \RR $ liegt.
Die Dachspitze hat die Koordinaten $ \RPUNKT{S}{0,5}{1,5}{h} $ und liegt auch auf der
Geraden $ g $.
Berechnen Sie die Höhe $ h $ des Gartenhauses.
( Zur Kontrolle: $ \RPUNKT{S}{0,5}{1,5}{2,6} $.)

Die Firstkanten des Daches sind die vier Kanten der Pyramide, die sich im Punkt S treffen.
Berechnen Sie die Länge einer Firstkante und die Größe des Winkels, den zwei benachbarte Firstkanten an der Spitze S einschließen.
Das Dach soll mit Dachziegeln gedeckt werden.
Ein Paket Dachziegel reicht für $ 3,1\,\mathrm{m^2} $ Dachfläche.
Untersuchen Sie, ob drei Pakete ausreichend sind, um das gesamte Dach zu decken.
Zu einer bestimmten Tageszeit fällt das Sonnenlicht parallel zur Dachkante $ \overrightarrow{D_1 S} $ ein und erzeugt von $ \mathrm{D_1} $ und S einen gemeinsamen Schattenpunkt $ \mathrm{S_1} $ in der x-y-Ebene.
Berechnen Sie die Koordinaten von $ \mathrm{S_1} $.
( Zur Kontrolle: $ \RPUNKT{S_1}{7}{-5}{0} $.)
Der Schattenpunkt von $ \mathrm{D_2} $ ist der Punkt $ \RPUNKT{S_2}{7}{-2}{0} $.
Weisen Sie nach, dass die Schattenlinie $ \overrightarrow{S_1 S_2} $ parallel zur Dachkante $ \overrightarrow{D_1 D_2} $ verläuft.
Wählen Sie zwei geeignete Eckpunkte des Daches so aus, dass deren Schattenlinie senkrecht zu $ \overrightarrow{S_1 S_2} $ verläuft. Begründen Sie Ihre Wahl.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Lernkontrolle Potenzen
39 min, 8 Aufgaben #0994Verschiedene Aufgaben zu Zehnerpotenzen. Zwei Textaufgaben inklusive. Bei den zwei letzten Aufgaben müssen mit Hilfe von Potenzgesetzen Terme vereinfacht werden.
Ebenen - Übungsaufgaben
52 min, 6 Aufgaben #1933Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.
Berechnungen an Körpern
62 min, 6 Aufgaben #9598Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.
Übungen - konstruieren und argumentieren
69 min, 8 Aufgaben #4030Aufgaben zur Konstruktion von Dreiecken samt Inkreis, Umkreis und Schwerpunkt, sowie besondere Vierecke wie Raute und Drachenviereck. Alle schön verpackt in Textaufgaben.
Wahrscheinlichkeiten
14 min, 2 Aufgaben #7390Zwei originale Aufgaben der mittleren Schulabschluss Prüfung (MSA) von 2012 und 2014 aus Berlin.