Einleitung
Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.
84 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Löse die linearen Gleichungssysteme.
$\begin{aligned}[t]
x+4y-z &= 13
\\ 3y+2z &= 21
\\ 3z &= 9
\end{aligned}$
$\begin{aligned}[t]
3x-2y+2z&=6\\2x-z&=2\\-3x&=-6
\end{aligned}$
$\begin{aligned}[t]
x-3y+5z&=-2\\y+2z&=8\\y+z&=6
\end{aligned}$
Bestimme die Lösungsmenge der Gleichungssysteme.
$\begin{aligned}[t]
x-y+2z &=0 \\
-2x+y-6z &= 0 \\
x-2z &= 3
\end{aligned}$
$\begin{aligned}[t]
a+b+2c &= 12 \\
3a-2b-5c &= 7 \\
a+2b-c &= -3
\end{aligned}$
$\begin{aligned}[t]
2x_1 + 3x_2 - 2x_3 &= 0 \\
x_2 + x_3 &= -1 \\
-x_1 + 2x_2 + 3x_3 &= -5
\end{aligned}$
Bestimme die Lösungsmenge der Gleichungssysteme.
$\begin{aligned}[t]
4x+9y+5z &=13 \\
-5x+6y + 3z &= 17 \\
6x+3y-10z &= 23
\end{aligned}$
$\begin{aligned}[t]
2a + 3b - c + 5d &= 11 \\
b + 3c - d &= 1 \\
4a - 2b \,\,\,\,\,\,\,\,\,\, - 2d &= 0 \\
a+b+c+d &= 4
\end{aligned}$
$\begin{aligned}[t]
\frac{1}{4}x-\frac{1}{2}y+\frac{3}{4}z&=4\\\frac{3}{2}x-\frac{2}{3}y-\frac{1}{2}z&=-2\\y-\frac{1}{2}z&=2
\end{aligned}$
Untersuchen Sie das LGS auf Lösbarkeit. Bestimmen Sie die Lösungsmenge.
$\begin{aligned}[t]
2x+2y+2z & =6 \\ 2x+y-z&=2 \\ 4x+3y+z&=8
\end{aligned}$
$\begin{aligned}[t]
3x+5y-2z&=10\\2x+8y-5z&=6\\4x+2y+z&=8
\end{aligned}$
Im Garten sitzen Schnecken, Raben und Katzen. Großvater zählt die Köpfe und die Füße der Tiere. Er kommt auf insgesamt 39 Köpfe und 57 Füße. Die Raben haben zusammen 6 Füße mehr als die Katzen. Wie viele Katzen sind es?
Eine Parabel zweiten Grades hat bei x = 0 eine Nullstelle und im Punkt P(2 $\vert$ 6) die Steigung 8. Bestimmen Sie die Gleichung der Parabel.
Eine dreistellige natürliche Zahl hat die Quersumme 14. Liest man die Zahl von hinten nach vorn und subtrahiert 22, so erhält man eine doppelt so große Zahl. Die mittlere Ziffer ist die Summe der beiden äußeren Ziffern. Wie heißt die Zahl?
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Abschlussarbeit Klasse 9 ohne Taschenrechner
39 min, 8 Aufgaben #2850Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
Strahlensätze **
54 min, 6 Aufgaben #4182Drei Schenkel, verdrehte Skizzen, Erbsen und der Mond sowie Bergspitzen. Das Prinzip ist das Gleiche, aber die Schwierigkeit ist doch um einiges größer als sonst. Das nächste Level an Strahlensatzaufgaben sozusagen.
Quadratische Funktionen
53 min, 6 Aufgaben #0070Eine Einführung in quadratische Funktionen. Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen. Ausblick könnte die quadratische Ergänzung sein.
BBR - Vergleichsarbeit Mathematik
59 min, 14 Aufgaben #2508Die Vergleichende Arbeit 2015 im Fach Mathematik zum Erwerb der Berufsbildungsreife bzw. des Hauptschulabschlusses. Bearbeitungszeit: 90 Minuten. Zugelassene Hilfsmittel: Formelübersicht und wissenschaftlicher nicht grafikfähiger Standard-Taschenrechner.
Rechnen mit Dezimalbrüchen
58 min, 10 Aufgaben #0670Viele Aufgaben zu den vier Hauptrechenarten mit Dezimalbrüchen. Schriftlich muss Plus, Minus, Mal und Durch benutzt werden.