Einleitung
Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.
84 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Löse die linearen Gleichungssysteme.
$\begin{aligned}[t]
x+4y-z &= 13
\\ 3y+2z &= 21
\\ 3z &= 9
\end{aligned}$
$\begin{aligned}[t]
3x-2y+2z&=6\\2x-z&=2\\-3x&=-6
\end{aligned}$
$\begin{aligned}[t]
x-3y+5z&=-2\\y+2z&=8\\y+z&=6
\end{aligned}$
Bestimme die Lösungsmenge der Gleichungssysteme.
$\begin{aligned}[t]
x-y+2z &=0 \\
-2x+y-6z &= 0 \\
x-2z &= 3
\end{aligned}$
$\begin{aligned}[t]
a+b+2c &= 12 \\
3a-2b-5c &= 7 \\
a+2b-c &= -3
\end{aligned}$
$\begin{aligned}[t]
2x_1 + 3x_2 - 2x_3 &= 0 \\
x_2 + x_3 &= -1 \\
-x_1 + 2x_2 + 3x_3 &= -5
\end{aligned}$
Bestimme die Lösungsmenge der Gleichungssysteme.
$\begin{aligned}[t]
4x+9y+5z &=13 \\
-5x+6y + 3z &= 17 \\
6x+3y-10z &= 23
\end{aligned}$
$\begin{aligned}[t]
2a + 3b - c + 5d &= 11 \\
b + 3c - d &= 1 \\
4a - 2b \,\,\,\,\,\,\,\,\,\, - 2d &= 0 \\
a+b+c+d &= 4
\end{aligned}$
$\begin{aligned}[t]
\frac{1}{4}x-\frac{1}{2}y+\frac{3}{4}z&=4\\\frac{3}{2}x-\frac{2}{3}y-\frac{1}{2}z&=-2\\y-\frac{1}{2}z&=2
\end{aligned}$
Untersuchen Sie das LGS auf Lösbarkeit. Bestimmen Sie die Lösungsmenge.
$\begin{aligned}[t]
2x+2y+2z & =6 \\ 2x+y-z&=2 \\ 4x+3y+z&=8
\end{aligned}$
$\begin{aligned}[t]
3x+5y-2z&=10\\2x+8y-5z&=6\\4x+2y+z&=8
\end{aligned}$
Im Garten sitzen Schnecken, Raben und Katzen. Großvater zählt die Köpfe und die Füße der Tiere. Er kommt auf insgesamt 39 Köpfe und 57 Füße. Die Raben haben zusammen 6 Füße mehr als die Katzen. Wie viele Katzen sind es?
Eine Parabel zweiten Grades hat bei x = 0 eine Nullstelle und im Punkt P(2 $\vert$ 6) die Steigung 8. Bestimmen Sie die Gleichung der Parabel.
Eine dreistellige natürliche Zahl hat die Quersumme 14. Liest man die Zahl von hinten nach vorn und subtrahiert 22, so erhält man eine doppelt so große Zahl. Die mittlere Ziffer ist die Summe der beiden äußeren Ziffern. Wie heißt die Zahl?
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Weidezelt Abitur GK Berlin 2016
64 min, 6 Aufgaben #1611Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.
Anwendungsaufgaben Dreiecksmessung
59 min, 5 Aufgaben #7020Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.
Mathematische Kompetenzen - Zufall
15 min, 6 Aufgaben #0008Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.
Polynomdivision und mittlere Änderungsrate
35 min, 6 Aufgaben #1551Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
Übungsaufgaben Wahrscheinlichkeitsrechnung
39 min, 5 Aufgaben #1652Übungsaufgaben mit Baumdiagrammen und Abzählverfahren. Mit dabei sind das Werfen von zwei Würfeln, Urnen mit Kugeln (mit bzw. ohne zurücklegen), Kombinatorik im Modehaus und Rosinenbrötchen.