Einleitung

Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.

84 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Löse die linearen Gleichungssysteme.

$\begin{aligned}[t]
x+4y-z &= 13
\\ 3y+2z &= 21
\\ 3z &= 9
\end{aligned}$

$\begin{aligned}[t]
3x-2y+2z&=6\\2x-z&=2\\-3x&=-6
\end{aligned}$

$\begin{aligned}[t]
x-3y+5z&=-2\\y+2z&=8\\y+z&=6
\end{aligned}$

2

Bestimme die Lösungsmenge der Gleichungssysteme.

$\begin{aligned}[t]
x-y+2z &=0 \\
-2x+y-6z &= 0 \\
x-2z &= 3
\end{aligned}$

$\begin{aligned}[t]
a+b+2c &= 12 \\
3a-2b-5c &= 7 \\
a+2b-c &= -3
\end{aligned}$

$\begin{aligned}[t]
2x_1 + 3x_2 - 2x_3 &= 0 \\
x_2 + x_3 &= -1 \\
-x_1 + 2x_2 + 3x_3 &= -5
\end{aligned}$

3

Bestimme die Lösungsmenge der Gleichungssysteme.

$\begin{aligned}[t]
4x+9y+5z &=13 \\
-5x+6y + 3z &= 17 \\
6x+3y-10z &= 23
\end{aligned}$

$\begin{aligned}[t]
2a + 3b - c + 5d &= 11 \\
b + 3c - d &= 1 \\
4a - 2b \,\,\,\,\,\,\,\,\,\, - 2d &= 0 \\
a+b+c+d &= 4
\end{aligned}$

$\begin{aligned}[t]
\frac{1}{4}x-\frac{1}{2}y+\frac{3}{4}z&=4\\\frac{3}{2}x-\frac{2}{3}y-\frac{1}{2}z&=-2\\y-\frac{1}{2}z&=2
\end{aligned}$

4

Untersuchen Sie das LGS auf Lösbarkeit. Bestimmen Sie die Lösungsmenge.

$\begin{aligned}[t]
2x+2y+2z & =6 \\ 2x+y-z&=2 \\ 4x+3y+z&=8
\end{aligned}$

$\begin{aligned}[t]
3x+5y-2z&=10\\2x+8y-5z&=6\\4x+2y+z&=8
\end{aligned}$

5

Im Garten sitzen Schnecken, Raben und Katzen. Großvater zählt die Köpfe und die Füße der Tiere. Er kommt auf insgesamt 39 Köpfe und 57 Füße. Die Raben haben zusammen 6 Füße mehr als die Katzen. Wie viele Katzen sind es?

6

Eine Parabel zweiten Grades hat bei x = 0 eine Nullstelle und im Punkt P(2 $\vert$ 6) die Steigung 8. Bestimmen Sie die Gleichung der Parabel.

7

Eine dreistellige natürliche Zahl hat die Quersumme 14. Liest man die Zahl von hinten nach vorn und subtrahiert 22, so erhält man eine doppelt so große Zahl. Die mittlere Ziffer ist die Summe der beiden äußeren Ziffern. Wie heißt die Zahl?

PDF zum Drucken

Weitere Arbeitsblätter

Terme addieren und subtrahieren

43 min, 8 Aufgaben #2828

Terme vereinfachen indem man gleichartige Glieder zusammenfasst und ggf. vorher noch ein paar Klammern auflöst. Auch müssen Terme aufgestellt und Zahlenmauern gelöst werden.

Übungsaufgaben zur Stochastik

30 min, 6 Aufgaben #1654

Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.

Übungen zu kombinatorischen Abzählverfahren

29 min, 8 Aufgaben #1648

Ob mit oder ohne Reihenfolge und mit oder ohne Wiederholung: die Frage, die sich stellt, ist immer die gleiche: wie viele Möglichkeiten gibt es? Bei den Aufgaben kommt man noch häufig durch Abzählen zur Lösung.

Übersicht e-Funktionen ableiten

69 min, 7 Aufgaben #6600

Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel). Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.

Kleine vermischte Übungen - Klasse 10

39 min, 13 Aufgaben #7400

Bunt gemischte Textaufgaben zu verschiedenen Themen der 10. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum