Einleitung
Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.
84 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Löse die linearen Gleichungssysteme.
$\begin{aligned}[t]
x+4y-z &= 13
\\ 3y+2z &= 21
\\ 3z &= 9
\end{aligned}$
$\begin{aligned}[t]
3x-2y+2z&=6\\2x-z&=2\\-3x&=-6
\end{aligned}$
$\begin{aligned}[t]
x-3y+5z&=-2\\y+2z&=8\\y+z&=6
\end{aligned}$
Bestimme die Lösungsmenge der Gleichungssysteme.
$\begin{aligned}[t]
x-y+2z &=0 \\
-2x+y-6z &= 0 \\
x-2z &= 3
\end{aligned}$
$\begin{aligned}[t]
a+b+2c &= 12 \\
3a-2b-5c &= 7 \\
a+2b-c &= -3
\end{aligned}$
$\begin{aligned}[t]
2x_1 + 3x_2 - 2x_3 &= 0 \\
x_2 + x_3 &= -1 \\
-x_1 + 2x_2 + 3x_3 &= -5
\end{aligned}$
Bestimme die Lösungsmenge der Gleichungssysteme.
$\begin{aligned}[t]
4x+9y+5z &=13 \\
-5x+6y + 3z &= 17 \\
6x+3y-10z &= 23
\end{aligned}$
$\begin{aligned}[t]
2a + 3b - c + 5d &= 11 \\
b + 3c - d &= 1 \\
4a - 2b \,\,\,\,\,\,\,\,\,\, - 2d &= 0 \\
a+b+c+d &= 4
\end{aligned}$
$\begin{aligned}[t]
\frac{1}{4}x-\frac{1}{2}y+\frac{3}{4}z&=4\\\frac{3}{2}x-\frac{2}{3}y-\frac{1}{2}z&=-2\\y-\frac{1}{2}z&=2
\end{aligned}$
Untersuchen Sie das LGS auf Lösbarkeit. Bestimmen Sie die Lösungsmenge.
$\begin{aligned}[t]
2x+2y+2z & =6 \\ 2x+y-z&=2 \\ 4x+3y+z&=8
\end{aligned}$
$\begin{aligned}[t]
3x+5y-2z&=10\\2x+8y-5z&=6\\4x+2y+z&=8
\end{aligned}$
Im Garten sitzen Schnecken, Raben und Katzen. Großvater zählt die Köpfe und die Füße der Tiere. Er kommt auf insgesamt 39 Köpfe und 57 Füße. Die Raben haben zusammen 6 Füße mehr als die Katzen. Wie viele Katzen sind es?
Eine Parabel zweiten Grades hat bei x = 0 eine Nullstelle und im Punkt P(2 $\vert$ 6) die Steigung 8. Bestimmen Sie die Gleichung der Parabel.
Eine dreistellige natürliche Zahl hat die Quersumme 14. Liest man die Zahl von hinten nach vorn und subtrahiert 22, so erhält man eine doppelt so große Zahl. Die mittlere Ziffer ist die Summe der beiden äußeren Ziffern. Wie heißt die Zahl?
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Aus 3 mach 4 - Abitur GK Berlin 2008
23 min, 5 Aufgaben #1987Original Abiturprüfung aus Berlin für den Grundkurs mit einem Glücksspielautomat. Mit dabei war die Kombinatorik, stochastische Unabhängigkeit, Bernoulli-Ketten, mindestens-mindestens Aufgabe und ein Hypothesentest.
Rechnen mit Brüchen
53 min, 13 Aufgaben #066013 mal 5 Aufgaben zum Addieren, Subtrahieren, Multiplizieren und Dividieren von Brüchen. Täglich etwas machen und 2 Wochen später ist man besser. :)
Sinus - Kosinus - Tangens
41 min, 6 Aufgaben #7000Sinus, Kosinus und Tangens von leicht bis schwer. Zunächst Aufgaben mit den Gleichungen und all ihren Varianten. Danach Standard-Aufgaben an rechtwinkligen Dreiecken und die zweite Hälfte sind Textaufgaben bei denen das gleiche noch einmal drankommt mit dem gewissen Etwas, das anspruchsvolle Aufgaben ausmacht.
Terme addieren und subtrahieren
43 min, 8 Aufgaben #2828Terme vereinfachen indem man gleichartige Glieder zusammenfasst und ggf. vorher noch ein paar Klammern auflöst. Auch müssen Terme aufgestellt und Zahlenmauern gelöst werden.
Strahlensätze *
27 min, 3 Aufgaben #4181Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.