Einleitung

Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.

84 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Löse die linearen Gleichungssysteme.

$\begin{aligned}[t]
x+4y-z &= 13
\\ 3y+2z &= 21
\\ 3z &= 9
\end{aligned}$

$\begin{aligned}[t]
3x-2y+2z&=6\\2x-z&=2\\-3x&=-6
\end{aligned}$

$\begin{aligned}[t]
x-3y+5z&=-2\\y+2z&=8\\y+z&=6
\end{aligned}$

2

Bestimme die Lösungsmenge der Gleichungssysteme.

$\begin{aligned}[t]
x-y+2z &=0 \\
-2x+y-6z &= 0 \\
x-2z &= 3
\end{aligned}$

$\begin{aligned}[t]
a+b+2c &= 12 \\
3a-2b-5c &= 7 \\
a+2b-c &= -3
\end{aligned}$

$\begin{aligned}[t]
2x_1 + 3x_2 - 2x_3 &= 0 \\
x_2 + x_3 &= -1 \\
-x_1 + 2x_2 + 3x_3 &= -5
\end{aligned}$

3

Bestimme die Lösungsmenge der Gleichungssysteme.

$\begin{aligned}[t]
4x+9y+5z &=13 \\
-5x+6y + 3z &= 17 \\
6x+3y-10z &= 23
\end{aligned}$

$\begin{aligned}[t]
2a + 3b - c + 5d &= 11 \\
b + 3c - d &= 1 \\
4a - 2b \,\,\,\,\,\,\,\,\,\, - 2d &= 0 \\
a+b+c+d &= 4
\end{aligned}$

$\begin{aligned}[t]
\frac{1}{4}x-\frac{1}{2}y+\frac{3}{4}z&=4\\\frac{3}{2}x-\frac{2}{3}y-\frac{1}{2}z&=-2\\y-\frac{1}{2}z&=2
\end{aligned}$

4

Untersuchen Sie das LGS auf Lösbarkeit. Bestimmen Sie die Lösungsmenge.

$\begin{aligned}[t]
2x+2y+2z & =6 \\ 2x+y-z&=2 \\ 4x+3y+z&=8
\end{aligned}$

$\begin{aligned}[t]
3x+5y-2z&=10\\2x+8y-5z&=6\\4x+2y+z&=8
\end{aligned}$

5

Im Garten sitzen Schnecken, Raben und Katzen. Großvater zählt die Köpfe und die Füße der Tiere. Er kommt auf insgesamt 39 Köpfe und 57 Füße. Die Raben haben zusammen 6 Füße mehr als die Katzen. Wie viele Katzen sind es?

6

Eine Parabel zweiten Grades hat bei x = 0 eine Nullstelle und im Punkt P(2 $\vert$ 6) die Steigung 8. Bestimmen Sie die Gleichung der Parabel.

7

Eine dreistellige natürliche Zahl hat die Quersumme 14. Liest man die Zahl von hinten nach vorn und subtrahiert 22, so erhält man eine doppelt so große Zahl. Die mittlere Ziffer ist die Summe der beiden äußeren Ziffern. Wie heißt die Zahl?

PDF zum Drucken

Weitere Arbeitsblätter

Integration 101

61 min, 10 Aufgaben #BDEGH

Aufgaben von leicht nach schwerer zum Üben.

Hemden mit Mängeln Abitur LK Berlin 2011

32 min, 6 Aufgaben #1720

Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.

Klassenarbeit Wachstum und Zerfall

38 min, 5 Aufgaben #6551

Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs. Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.

Arbeit - quadratische Funktionen

39 min, 4 Aufgaben #0069

Eine originale Arbeit mit 46 erreichbaren Punkten zum Thema quadratische Funktionen. Mit dabei: Linearfaktor, Satz von Vieta, Scheitelpunktsform, Optimierungsproblem und Imbiss Bronko.

Klausurvorbereitung - Analysis - NRW

16 min, 3 Aufgaben #1581

Beispielaufgaben für die zentralen Klausuren aus Nordrhein-Westfalen vom Schulministerium. Es wird vor allem das Verständnis der Ableitungsfunktion geprüft. Wachstumsgeschwindigkeiten, Funktionsgleichungen von Tangenten und Skizzen kommen vor.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum