Einleitung
Gewinnerwartung und Wahrscheinlichkeiten bei einem bzw. zwei Würfeln.
Die Aufgaben beschäftigen sich hauptsächlich mit Baumdiagrammen und damit, aus dem Text herauszufinden was genau man zählen muss.
29 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.
Aufgaben
Ein Glücksrad enthält 8 gleich große Sektoren. Vier der Sektoren sind rot, drei sind weiß und einer ist schwarz.
Laut Auszahlungsplan erhält man für Rot nichts, für Weiß 50 Cent und für Schwarz 2$\,\euro$.
Der Einsatz für ein Spiel beträgt einen halben Euro. Ist hier langfristig mit einem Gewinn für den Automatenbetreiber oder für den Spieler zu rechnen?
Ein Holzwürfel mit roter Oberfläche wird durch 6 senkrechte Schnitte in 27 gleich große Würfel zerschnitten. Diese werden dann in eine Urne gelegt. Anschließend wird aus der Urne ein Würfel gezogen. Berechnen Sie die Wahrscheinlichkeiten folgender Ereignisse:
Der gezogene Würfel hat keine rote Seite.
Der gezogene Würfel hat zwei rote Seiten.
Der gezogene Würfel hat mindestens zwei rote Seiten.
Der gezogene Würfel hat höchstens zwei rote Seiten.

Zwei Würfel mit den abgebildeten Netzen werden gleichzeitig geworfen.
Welche Augensumme ist am wahrscheinlichsten?
Mit welcher Wahrscheinlichkeit ist die Augensumme kleiner als 5?
Wie wahrscheinlich ist ein Pasch?

Im Folgenden wird mit einem Würfel geworfen, der das abgebildete Netz mit den Ziffern 1, 2 und 6 besitzt.
(a) Der Würfel wird dreimal geworfen. Berechnen Sie die Wahrscheinlichkeiten der folgenden Ereignisse:

Die Sechs fällt genau zweimal.
Die Sechs fällt höchstens einmal.
Die Sechs fällt mindestens einmal.
$\bar{\mathrm{A}}$
$\mathrm{B} \cap \mathrm{C}$
$\mathrm{A} \cup \mathrm{B}$
(b) Herr Schneider darf den Würfel für einen Einsatz von 1€ zweimal werfen. Er hat gewonnen, wenn die Augensumme 3 beträgt oder wenn zwei Sechsen fallen. Er erhält dann 3€ Auszahlung. Ist das Spiel für Herrn Schneider günstig?
Weitere Arbeitsblätter
Klammern auflösen
56 min, 9 Aufgaben #3337Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.
Wichtige Formeln im Gebäudeenergiegesetz
0 min, 4 Aufgaben #PQUVIn diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.
Klausur Differentialrechnung
42 min, 5 Aufgaben #1565Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.
Prozentrechnung - Grundlagen
81 min, 5 Aufgaben #0100Hier geht es um pures Rechnen. Zunächst wird der Zusammenhang von Prozenten und Brüchen geübt und im Anschluss die drei grundlegenden Aufgabentypen der Prozentrechnung.
Klassenarbeit - Rechnen mit Wurzeln
27 min, 9 Aufgaben #0993Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.