Einleitung
Gewinnerwartung und Wahrscheinlichkeiten bei einem bzw. zwei Würfeln.
Die Aufgaben beschäftigen sich hauptsächlich mit Baumdiagrammen und damit, aus dem Text herauszufinden was genau man zählen muss.
29 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.
Aufgaben
Ein Glücksrad enthält 8 gleich große Sektoren. Vier der Sektoren sind rot, drei sind weiß und einer ist schwarz.
Laut Auszahlungsplan erhält man für Rot nichts, für Weiß 50 Cent und für Schwarz 2$\,\euro$.
Der Einsatz für ein Spiel beträgt einen halben Euro. Ist hier langfristig mit einem Gewinn für den Automatenbetreiber oder für den Spieler zu rechnen?
Ein Holzwürfel mit roter Oberfläche wird durch 6 senkrechte Schnitte in 27 gleich große Würfel zerschnitten. Diese werden dann in eine Urne gelegt. Anschließend wird aus der Urne ein Würfel gezogen. Berechnen Sie die Wahrscheinlichkeiten folgender Ereignisse:
Der gezogene Würfel hat keine rote Seite.
Der gezogene Würfel hat zwei rote Seiten.
Der gezogene Würfel hat mindestens zwei rote Seiten.
Der gezogene Würfel hat höchstens zwei rote Seiten.

Zwei Würfel mit den abgebildeten Netzen werden gleichzeitig geworfen.
Welche Augensumme ist am wahrscheinlichsten?
Mit welcher Wahrscheinlichkeit ist die Augensumme kleiner als 5?
Wie wahrscheinlich ist ein Pasch?

Im Folgenden wird mit einem Würfel geworfen, der das abgebildete Netz mit den Ziffern 1, 2 und 6 besitzt.
(a) Der Würfel wird dreimal geworfen. Berechnen Sie die Wahrscheinlichkeiten der folgenden Ereignisse:

Die Sechs fällt genau zweimal.
Die Sechs fällt höchstens einmal.
Die Sechs fällt mindestens einmal.
$\bar{\mathrm{A}}$
$\mathrm{B} \cap \mathrm{C}$
$\mathrm{A} \cup \mathrm{B}$
(b) Herr Schneider darf den Würfel für einen Einsatz von 1€ zweimal werfen. Er hat gewonnen, wenn die Augensumme 3 beträgt oder wenn zwei Sechsen fallen. Er erhält dann 3€ Auszahlung. Ist das Spiel für Herrn Schneider günstig?
Weitere Arbeitsblätter
Übungen zur Differenzialrechnung
98 min, 8 Aufgaben #1560Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.
Bernoulli-Ketten Anwendung
37 min, 4 Aufgaben #1701Anwendungsaufgaben zu Bernoulli-Ketten. Die ersten zwei Aufgaben fragen die grundlegenden Berechnungen ab. Die dritte ist vom Typ mindestens-mindestens und die vierte zeichnet sich durch eine äußert schwierige Aufgabenstellung aus. Ein kühler Kopf ist hier gefragt.
Anwendungsaufgaben Dreiecksmessung
59 min, 5 Aufgaben #7020Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.
Teilweises Wurzelziehen - Rationalmachen des Nenners
52 min, 11 Aufgaben #0992Aufgaben zum teilweisen, auch partiellen, Wurzelziehen mit Zahlen, Variablen und Faktorisieren. Einfache Aufgaben zum Rationalmachen des Nenners.