Einleitung
Originale Grundkurs Klausur aus Berlin eines 2. Semesters.
Der Hauptteil ist die Kurvendiskussion einer e-Funktion. Wendetangente, Stammfunktion und Flächeninhalt inklusive.
Die andere Hälfte beinhaltet Integralrechnung mit Parametern und ein paar kombinatorische Aufgaben.
42 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.
Aufgaben
Flächeninhalte (ca. 30 %)
Berechnen Sie den Inhalt $A$ der von den Graphen der Funktionen
$g(x) = 3x^3 + 4x^2-6x+6$ und $h(x) = -x^3+18x+6$ eingeschlossenen Flächen.
Bestimmen Sie den Parameter $a$ ($a\in \RR, a > 0$) so, dass der Flächeninhalt zwischen dem Graphen von $k(x) = 3x^2 + ax - 10$ und der x-Achse auf dem Intervall $[1;\,3]$ 18 Flächeneinheiten beträgt.
Kombinatorik (ca. 15 %)
Bei einem Rennen mit acht Pferden werden zwei Wetten angeboten.
(i) Man wettet auf den Einlauf der ersten drei Pferde in der richtigen Reihenfolge.
(ii) Man wettet auf den Einlauf der ersten drei Pferde, wobei die Reihenfolge keine Rolle spielt.
Wie groß ist bei (i) und (ii) die Gewinnwahrscheinlichkeit, wenn man annimmt, dass alle Pferde gleiche Gewinnchancen haben?
In einem Kartenspiel mit 36 Karten gibt es 9 Herzkarten. Ohne Zurücklegen zieht Max 16 Karten.
Wie groß ist die Wahrscheinlichkeit, dass unter den gezogenen Karten genau 5 Herzkarten sind?
Exponentialfunktion (ca. 55 %)
Gegeben ist die Funktion $f$ mit $f(x) = x \cdot e^{1-x}$. Ihr Graph ist $G_f$.
Untersuchen Sie $f$ auf Nullstellen. Bestimmen Sie das Verhalten von $f$ für $x \rightarrow +\infty$ und $x \rightarrow - \infty$.
Bestimmen Sie relative Extrempunkte des Graphen $G_f$ und deren Art sowie Wendepunkte.
(Kontrolle: $f'(x) = (1-x)\cdot e^{1-x}$. Ohne Nachweis dürfen Sie $f'''(x_w) \ne 0$ verwenden.)
Ermitteln Sie die Gleichung der Wendetangente.
Zeichnen Sie $G_f$ im Bereich $[-0,5;\,4]$ unter Verwendung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.
Bestätigen Sie, dass die Funktion $F(x) = (-x-1)\cdot e^{1-x}$ eine Stammfunktion von $f$ ist.
Der Graph $G_f$, die positive x-Achse und die senkrechte Gerade $g$ mit $x=5$ begrenzen eine Fläche. Berechnen Sie deren Inhalt.
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Quadratische Gleichungen
74 min, 7 Aufgaben #0062Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.
Textaufgaben mit mehreren Unbekannten
46 min, 11 Aufgaben #1336Elf Textaufgaben bei denen immer zunächst zwei Gleichungen mit zwei Unbekannten aufgestellt und dann gelöst werden müssen.
Kleine vermischte Übungen - Klasse 8
50 min, 12 Aufgaben #5200Bunt gemischte Textaufgaben zu verschiedenen Themen der 8. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.
Arbeit - ganzrationale Funktionen
49 min, 3 Aufgaben #1520Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.