Einleitung

Originale Grundkurs Klausur aus Berlin eines 2. Semesters.
Der Hauptteil ist die Kurvendiskussion einer e-Funktion. Wendetangente, Stammfunktion und Flächeninhalt inklusive.
Die andere Hälfte beinhaltet Integralrechnung mit Parametern und ein paar kombinatorische Aufgaben.

42 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.

Aufgaben

1

Flächeninhalte (ca. 30 %)

Berechnen Sie den Inhalt $A$ der von den Graphen der Funktionen
$g(x) = 3x^3 + 4x^2-6x+6$ und $h(x) = -x^3+18x+6$ eingeschlossenen Flächen.

Bestimmen Sie den Parameter $a$ ($a\in \RR, a > 0$) so, dass der Flächeninhalt zwischen dem Graphen von $k(x) = 3x^2 + ax - 10$ und der x-Achse auf dem Intervall $[1;\,3]$ 18 Flächeneinheiten beträgt.

2

Kombinatorik (ca. 15 %)

Bei einem Rennen mit acht Pferden werden zwei Wetten angeboten.
(i) Man wettet auf den Einlauf der ersten drei Pferde in der richtigen Reihenfolge.
(ii) Man wettet auf den Einlauf der ersten drei Pferde, wobei die Reihenfolge keine Rolle spielt.
Wie groß ist bei (i) und (ii) die Gewinnwahrscheinlichkeit, wenn man annimmt, dass alle Pferde gleiche Gewinnchancen haben?

In einem Kartenspiel mit 36 Karten gibt es 9 Herzkarten. Ohne Zurücklegen zieht Max 16 Karten.
Wie groß ist die Wahrscheinlichkeit, dass unter den gezogenen Karten genau 5 Herzkarten sind?

3

Exponentialfunktion (ca. 55 %)

Gegeben ist die Funktion $f$ mit $f(x) = x \cdot e^{1-x}$. Ihr Graph ist $G_f$.

Untersuchen Sie $f$ auf Nullstellen. Bestimmen Sie das Verhalten von $f$ für $x \rightarrow +\infty$ und $x \rightarrow - \infty$.

Bestimmen Sie relative Extrempunkte des Graphen $G_f$ und deren Art sowie Wendepunkte.

(Kontrolle: $f'(x) = (1-x)\cdot e^{1-x}$. Ohne Nachweis dürfen Sie $f'''(x_w) \ne 0$ verwenden.)

Ermitteln Sie die Gleichung der Wendetangente.

Zeichnen Sie $G_f$ im Bereich $[-0,5;\,4]$ unter Verwendung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

Bestätigen Sie, dass die Funktion $F(x) = (-x-1)\cdot e^{1-x}$ eine Stammfunktion von $f$ ist.

Der Graph $G_f$, die positive x-Achse und die senkrechte Gerade $g$ mit $x=5$ begrenzen eine Fläche. Berechnen Sie deren Inhalt.

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis Klausur


Weitere Arbeitsblätter

Wichtige Formeln im Gebäudeenergiegesetz

0 min, 4 Aufgaben #PQUV

In diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.

Textgleichungen mit Brüchen für Profis 1v3

39 min, 8 Aufgaben #1341

Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.

Klassenarbeit Wachstum und Zerfall

38 min, 5 Aufgaben #6551

Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs. Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.

Weidezelt Abitur GK Berlin 2016

64 min, 6 Aufgaben #1611

Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.

Diagnosetest konstruieren und argumentieren

36 min, 5 Aufgaben #4025

Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum