Einleitung

Originale Grundkurs Klausur aus Berlin eines 2. Semesters.
Der Hauptteil ist die Kurvendiskussion einer e-Funktion. Wendetangente, Stammfunktion und Flächeninhalt inklusive.
Die andere Hälfte beinhaltet Integralrechnung mit Parametern und ein paar kombinatorische Aufgaben.

42 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.

Aufgaben

1

Flächeninhalte (ca. 30 %)

Berechnen Sie den Inhalt $A$ der von den Graphen der Funktionen
$g(x) = 3x^3 + 4x^2-6x+6$ und $h(x) = -x^3+18x+6$ eingeschlossenen Flächen.

Bestimmen Sie den Parameter $a$ ($a\in \RR, a > 0$) so, dass der Flächeninhalt zwischen dem Graphen von $k(x) = 3x^2 + ax - 10$ und der x-Achse auf dem Intervall $[1;\,3]$ 18 Flächeneinheiten beträgt.

2

Kombinatorik (ca. 15 %)

Bei einem Rennen mit acht Pferden werden zwei Wetten angeboten.
(i) Man wettet auf den Einlauf der ersten drei Pferde in der richtigen Reihenfolge.
(ii) Man wettet auf den Einlauf der ersten drei Pferde, wobei die Reihenfolge keine Rolle spielt.
Wie groß ist bei (i) und (ii) die Gewinnwahrscheinlichkeit, wenn man annimmt, dass alle Pferde gleiche Gewinnchancen haben?

In einem Kartenspiel mit 36 Karten gibt es 9 Herzkarten. Ohne Zurücklegen zieht Max 16 Karten.
Wie groß ist die Wahrscheinlichkeit, dass unter den gezogenen Karten genau 5 Herzkarten sind?

3

Exponentialfunktion (ca. 55 %)

Gegeben ist die Funktion $f$ mit $f(x) = x \cdot e^{1-x}$. Ihr Graph ist $G_f$.

Untersuchen Sie $f$ auf Nullstellen. Bestimmen Sie das Verhalten von $f$ für $x \rightarrow +\infty$ und $x \rightarrow - \infty$.

Bestimmen Sie relative Extrempunkte des Graphen $G_f$ und deren Art sowie Wendepunkte.

(Kontrolle: $f'(x) = (1-x)\cdot e^{1-x}$. Ohne Nachweis dürfen Sie $f'''(x_w) \ne 0$ verwenden.)

Ermitteln Sie die Gleichung der Wendetangente.

Zeichnen Sie $G_f$ im Bereich $[-0,5;\,4]$ unter Verwendung der bisherigen Ergebnisse in ein geeignetes Koordinatensystem.

Bestätigen Sie, dass die Funktion $F(x) = (-x-1)\cdot e^{1-x}$ eine Stammfunktion von $f$ ist.

Der Graph $G_f$, die positive x-Achse und die senkrechte Gerade $g$ mit $x=5$ begrenzen eine Fläche. Berechnen Sie deren Inhalt.

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis Klausur


Weitere Arbeitsblätter

Berechnungen an Körpern

62 min, 6 Aufgaben #9598

Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.

Übungsaufgaben zur Stochastik

30 min, 6 Aufgaben #1654

Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.

Ebenen - Übungsaufgaben

52 min, 6 Aufgaben #1933

Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.

Kleine vermischte Übungen - Klasse 10

39 min, 13 Aufgaben #7400

Bunt gemischte Textaufgaben zu verschiedenen Themen der 10. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.

Terme addieren und subtrahieren

43 min, 8 Aufgaben #2828

Terme vereinfachen indem man gleichartige Glieder zusammenfasst und ggf. vorher noch ein paar Klammern auflöst. Auch müssen Terme aufgestellt und Zahlenmauern gelöst werden.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum