Einleitung

Das Vereinfachen von Termen mit Klammern wird Stück für Stück gezeigt.
Mit dabei sind Minusklammern, das einfache und das doppelte Distributivgesetz.
Nach den Aufgaben ist man fachlich soweit sich als nächstes an die binomischen Formeln vagen zu können.

35 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Löse die Klammer auf.

$-(4+a)$

$-(b-3)$

$-(-a+7)$

$-(a+b)$

$-(x-y)$

$-(-2c-4d)$

$-(8a^2-13b^2)$

$-(-4c-5d-7e)$

$-(17x-9y-12z)$

2

$x-(y+z)$

$a-(b-c)$

$x-(-7+y)$

$4a-(a-b)$

$6r-(5s-8r)$

$9x-(4y+5x)$

$23c-(-9d+8c)$

$12-(4-x+y)$

$29c-(-7d-3c-5e)$

3

Löse die Klammer auf.

$x(1+y)$

$q(r+v)$

$k(s+t)$

$y(b+0)$

$10(3x+2y)$

$9(3a+4b)$

4

$2a(3y+4z)$

$9r(4s+3t)$

$4k(3m+2n)$

$20a(11b+3c)$

$22x(3y+4z)$

$10b(19e+f)$

5

$5(x-y)$

$2(2-y)$

$7(3-k)$

$(x-y)\cdot 7$

$(y-2)\cdot 2$

$(3-x)\cdot 8$

6

Löse die Klammern auf und fasse zusammen.

$3(x+2y)-3x$

$x(3+2x) + 2(x^2-x)$

$-3(a+b)-4a$

$-4(2a-5b) - 8b$

$3b-3(b-a)$

$5(x+3y) - 5x$

7

$(x+y)(x-y+2)$

$(a+3)(a-2)$

$(a+5)(a-2)$

$(c+b)(c-b+2)$

$(x+3)(x+4)$

$(x-2)(5-x)$

8

$(a+b)(a^2 - ab + b^2)$

$(a-b)(a^2-ab+b^2)$

$(2a+3b)(5a-6b+1)$

$(3x + 2y)(9x-2y-3z)$

$(5a-6b+3c)(7a-5c)$

$(10u-5v+8)(20u-13v)$

PDF zum Drucken

Weitere Arbeitsblätter

Quadratische Gleichungen

74 min, 7 Aufgaben #0062

Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.

random title

0 min, 0 Aufgaben #GKVW

Lern­kontrolle Wahr­scheinlich­keits­rechnung

36 min, 4 Aufgaben #7392

Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.

Rechnen mit Brüchen

53 min, 13 Aufgaben #0660

13 mal 5 Aufgaben zum Addieren, Subtrahieren, Multiplizieren und Dividieren von Brüchen. Täglich etwas machen und 2 Wochen später ist man besser. :)

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum