Einleitung

Das Vereinfachen von Termen mit Klammern wird Stück für Stück gezeigt.
Mit dabei sind Minusklammern, das einfache und das doppelte Distributivgesetz.
Nach den Aufgaben ist man fachlich soweit sich als nächstes an die binomischen Formeln vagen zu können.

35 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Löse die Klammer auf.

$-(4+a)$

$-(b-3)$

$-(-a+7)$

$-(a+b)$

$-(x-y)$

$-(-2c-4d)$

$-(8a^2-13b^2)$

$-(-4c-5d-7e)$

$-(17x-9y-12z)$

2

$x-(y+z)$

$a-(b-c)$

$x-(-7+y)$

$4a-(a-b)$

$6r-(5s-8r)$

$9x-(4y+5x)$

$23c-(-9d+8c)$

$12-(4-x+y)$

$29c-(-7d-3c-5e)$

3

Löse die Klammer auf.

$x(1+y)$

$q(r+v)$

$k(s+t)$

$y(b+0)$

$10(3x+2y)$

$9(3a+4b)$

4

$2a(3y+4z)$

$9r(4s+3t)$

$4k(3m+2n)$

$20a(11b+3c)$

$22x(3y+4z)$

$10b(19e+f)$

5

$5(x-y)$

$2(2-y)$

$7(3-k)$

$(x-y)\cdot 7$

$(y-2)\cdot 2$

$(3-x)\cdot 8$

6

Löse die Klammern auf und fasse zusammen.

$3(x+2y)-3x$

$x(3+2x) + 2(x^2-x)$

$-3(a+b)-4a$

$-4(2a-5b) - 8b$

$3b-3(b-a)$

$5(x+3y) - 5x$

7

$(x+y)(x-y+2)$

$(a+3)(a-2)$

$(a+5)(a-2)$

$(c+b)(c-b+2)$

$(x+3)(x+4)$

$(x-2)(5-x)$

8

$(a+b)(a^2 - ab + b^2)$

$(a-b)(a^2-ab+b^2)$

$(2a+3b)(5a-6b+1)$

$(3x + 2y)(9x-2y-3z)$

$(5a-6b+3c)(7a-5c)$

$(10u-5v+8)(20u-13v)$

PDF zum Drucken

Weitere Arbeitsblätter

Arbeit - quadratische Funktionen

39 min, 4 Aufgaben #0069

Eine originale Arbeit mit 46 erreichbaren Punkten zum Thema quadratische Funktionen. Mit dabei: Linearfaktor, Satz von Vieta, Scheitelpunktsform, Optimierungsproblem und Imbiss Bronko.

Lern­kontrolle Wahr­scheinlich­keits­rechnung

36 min, 4 Aufgaben #7392

Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.

Vermischte Übungen MSA

36 min, 6 Aufgaben #1290

Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.

Bernoulli-Ketten

43 min, 4 Aufgaben #1700

Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.

Prozentrechnung - Grundlagen

81 min, 5 Aufgaben #0100

Hier geht es um pures Rechnen. Zunächst wird der Zusammenhang von Prozenten und Brüchen geübt und im Anschluss die drei grundlegenden Aufgabentypen der Prozentrechnung.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum