Einleitung

Das Vereinfachen von Termen mit Klammern wird Stück für Stück gezeigt.
Mit dabei sind Minusklammern, das einfache und das doppelte Distributivgesetz.
Nach den Aufgaben ist man fachlich soweit sich als nächstes an die binomischen Formeln vagen zu können.

35 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Löse die Klammer auf.

$-(4+a)$

$-(b-3)$

$-(-a+7)$

$-(a+b)$

$-(x-y)$

$-(-2c-4d)$

$-(8a^2-13b^2)$

$-(-4c-5d-7e)$

$-(17x-9y-12z)$

2

$x-(y+z)$

$a-(b-c)$

$x-(-7+y)$

$4a-(a-b)$

$6r-(5s-8r)$

$9x-(4y+5x)$

$23c-(-9d+8c)$

$12-(4-x+y)$

$29c-(-7d-3c-5e)$

3

Löse die Klammer auf.

$x(1+y)$

$q(r+v)$

$k(s+t)$

$y(b+0)$

$10(3x+2y)$

$9(3a+4b)$

4

$2a(3y+4z)$

$9r(4s+3t)$

$4k(3m+2n)$

$20a(11b+3c)$

$22x(3y+4z)$

$10b(19e+f)$

5

$5(x-y)$

$2(2-y)$

$7(3-k)$

$(x-y)\cdot 7$

$(y-2)\cdot 2$

$(3-x)\cdot 8$

6

Löse die Klammern auf und fasse zusammen.

$3(x+2y)-3x$

$x(3+2x) + 2(x^2-x)$

$-3(a+b)-4a$

$-4(2a-5b) - 8b$

$3b-3(b-a)$

$5(x+3y) - 5x$

7

$(x+y)(x-y+2)$

$(a+3)(a-2)$

$(a+5)(a-2)$

$(c+b)(c-b+2)$

$(x+3)(x+4)$

$(x-2)(5-x)$

8

$(a+b)(a^2 - ab + b^2)$

$(a-b)(a^2-ab+b^2)$

$(2a+3b)(5a-6b+1)$

$(3x + 2y)(9x-2y-3z)$

$(5a-6b+3c)(7a-5c)$

$(10u-5v+8)(20u-13v)$

PDF zum Drucken

Weitere Arbeitsblätter

Kartenspiel Abitur GK Berlin 2016

46 min, 8 Aufgaben #1990

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Studienkolleg Vektoren, SS 2017

127 min, 10 Aufgaben #1818

Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.

Klammern auflösen

56 min, 9 Aufgaben #3337

Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.

Extremwertaufgaben

72 min, 7 Aufgaben #1599

Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

Lern­kontrolle Wahr­scheinlich­keits­rechnung

36 min, 4 Aufgaben #7392

Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum