Einleitung
Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz).
Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen.
Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert.
Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.
89 Minuten Erklärungen in 14 Aufgaben von Koonys Schule.
Aufgaben
$ (a+3b)^2 + (a+b)(4a+b)$
$ (4x+y)^2 - (x+y)(3x+y)$
$ (0,5x+0,3y)^2 - (0,2x-0,4y)$
$ \left(\frac{a}{2} - 2b\right)^2 + \left(6a - \frac{b}{3}\right)^2$
$ \frac{9}{16} - c^2 $
$ \frac{4}{9} + \frac{4}{3}c + c^2 $
$ 0,16a^2 - 0,48ab + 0,36b^2 $
$ 144z^2 - 360zy + 225y^2 $
$ (x+5)^2 = (x-4)^2$
$ (x-7)(x+7) = (x+8)^2 - 1$
$ (x-11)^2 - (x+9)^2 = 0$
$ \left(x+\frac{1}{3}\right)^2 - \left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right) + \frac{5}{36} = 0$
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Quadratische Funktionen
53 min, 6 Aufgaben #0070Eine Einführung in quadratische Funktionen. Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen. Ausblick könnte die quadratische Ergänzung sein.
Vermischte Übungen MSA
36 min, 6 Aufgaben #1290Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.
Bernoulli-Ketten Anwendung
37 min, 4 Aufgaben #1701Anwendungsaufgaben zu Bernoulli-Ketten. Die ersten zwei Aufgaben fragen die grundlegenden Berechnungen ab. Die dritte ist vom Typ mindestens-mindestens und die vierte zeichnet sich durch eine äußert schwierige Aufgabenstellung aus. Ein kühler Kopf ist hier gefragt.
Weidezelt Abitur GK Berlin 2016
64 min, 6 Aufgaben #1611Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.