Einleitung

Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz).
Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen.
Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert.
Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.

89 Minuten Erklärungen in 14 Aufgaben von Koonys Schule.

Aufgaben

Löse die Klammern auf und fasse zusammen.

1

$ (x+y)^2 $

$ (x-y)^2 $

$ (x+y)(x-y) $

2

$ (x+2)^2 $

$ (x-1)^2 $

$ (x+4)(x-4) $

3

$ (2x+3)^2$

$ (x-2y)^2$

$ (2x+z)(2x-z)$

4

$ (-4+x)^2$

$ (x+(-3))^2$

$ (-2-x)^2$

$ (1-(-x))^2$

5

$ (3x^2 + 4y)^2$

$ (4a^3 - 3b)^2$

$ (p^2-q^2)(p^2+q^2)$

6

$ (a+3b)^2 + (a+b)(4a+b)$

$ (4x+y)^2 - (x+y)(3x+y)$

$ (0,5x+0,3y)^2 - (0,2x-0,4y)$

$ \left(\frac{a}{2} - 2b\right)^2 + \left(6a - \frac{b}{3}\right)^2$

Faktorisiere mit Hilfe der binomischen Formeln.

7

$ a^2 + 2ab + b^2 $

$ 9-2\cdot 3x + x^2 $

$ 36-y^2 $

8

$ 9a^2 + 6ab + b^2 $

$ 49y^2-14yx+x^2 $

$ 0,36-a^2 $

9

$ \frac{9}{16} - c^2 $

$ \frac{4}{9} + \frac{4}{3}c + c^2 $

$ 0,16a^2 - 0,48ab + 0,36b^2 $

$ 144z^2 - 360zy + 225y^2 $

Bestimme die Lösungsmenge.

10

$ (x+5)^2 = (x-4)^2$

$ (x-7)(x+7) = (x+8)^2 - 1$

$ (x-11)^2 - (x+9)^2 = 0$

$ \left(x+\frac{1}{3}\right)^2 - \left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right) + \frac{5}{36} = 0$

11

$ (x+1)^2 + (x+4)^2 = (x+2)^2 + (x+3)^2 - 2x $

$ (x-4)^2 + (2x-1)^2 + (3x+5) = 5x^2 $

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 8 Terme


Weitere Arbeitsblätter

Glücksrad mit Urne - Übungsaufgabe Stochastik LK

21 min, 6 Aufgaben #1710

Eine Übungsaufgabe, die Urne und Glücksrad kombiniert. Nebst Baumdiagrammen, Bernoulli und der summierten Binomialverteilung werden auch Gewinnerwartung und Prozentrechnung beim Kreis benötigt.

Wurzelterme vereinfachen ohne Taschenrechner

41 min, 13 Aufgaben #0990

Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.

Bernoulli-Ketten

43 min, 4 Aufgaben #1700

Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.

Kegel, Pyramide, Kugel

27 min, 5 Aufgaben #9540

Die Formeln zur Oberflächen- und Volumenberechnung bei Kegeln, Pyramiden und Kugel kommen zur Anwendung. Es kommt dabei u.a. auch der Dreisatz sowie die Dichte-Formel zur Anwendung.

Polynomdivision und mittlere Änderungsrate

35 min, 6 Aufgaben #1551

Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum