Einleitung

Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz).
Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen.
Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert.
Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.

89 Minuten Erklärungen in 14 Aufgaben von Koonys Schule.

Aufgaben

Löse die Klammern auf und fasse zusammen.

1

$ (x+y)^2 $

$ (x-y)^2 $

$ (x+y)(x-y) $

2

$ (x+2)^2 $

$ (x-1)^2 $

$ (x+4)(x-4) $

3

$ (2x+3)^2$

$ (x-2y)^2$

$ (2x+z)(2x-z)$

4

$ (-4+x)^2$

$ (x+(-3))^2$

$ (-2-x)^2$

$ (1-(-x))^2$

5

$ (3x^2 + 4y)^2$

$ (4a^3 - 3b)^2$

$ (p^2-q^2)(p^2+q^2)$

6

$ (a+3b)^2 + (a+b)(4a+b)$

$ (4x+y)^2 - (x+y)(3x+y)$

$ (0,5x+0,3y)^2 - (0,2x-0,4y)$

$ \left(\frac{a}{2} - 2b\right)^2 + \left(6a - \frac{b}{3}\right)^2$

Faktorisiere mit Hilfe der binomischen Formeln.

7

$ a^2 + 2ab + b^2 $

$ 9-2\cdot 3x + x^2 $

$ 36-y^2 $

8

$ 9a^2 + 6ab + b^2 $

$ 49y^2-14yx+x^2 $

$ 0,36-a^2 $

9

$ \frac{9}{16} - c^2 $

$ \frac{4}{9} + \frac{4}{3}c + c^2 $

$ 0,16a^2 - 0,48ab + 0,36b^2 $

$ 144z^2 - 360zy + 225y^2 $

Bestimme die Lösungsmenge.

10

$ (x+5)^2 = (x-4)^2$

$ (x-7)(x+7) = (x+8)^2 - 1$

$ (x-11)^2 - (x+9)^2 = 0$

$ \left(x+\frac{1}{3}\right)^2 - \left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right) + \frac{5}{36} = 0$

11

$ (x+1)^2 + (x+4)^2 = (x+2)^2 + (x+3)^2 - 2x $

$ (x-4)^2 + (2x-1)^2 + (3x+5) = 5x^2 $

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 8 Terme


Weitere Arbeitsblätter

Weidezelt Abitur GK Berlin 2016

64 min, 6 Aufgaben #1611

Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.

Klausur - Grundkurs - 2. Semester

42 min, 3 Aufgaben #1660

Originale Grundkurs Klausur aus Berlin eines 2. Semesters. Der Hauptteil ist die Kurvendiskussion einer e-Funktion. Wendetangente, Stammfunktion und Flächeninhalt inklusive. Die andere Hälfte beinhaltet Integralrechnung mit Parametern und ein paar kombinatorische Aufgaben.

Klassenarbeit binomische Formeln

33 min, 8 Aufgaben #3132

Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.

Textgleichungen mit Brüchen für Profis 3v3

56 min, 8 Aufgaben #1343

Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum