Einleitung
Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.
49 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.
Aufgaben
Gegeben sei die Funktion $ f(x) = x^4 - 5x^2 + 6 $.
Untersuchen Sie $ f $ auf Symmetrie und dem Verhalten im Unendlichen.
Ermitteln Sie alle Achsenschnittpunkte.
Skizzieren Sie mit den Ergebnissen aus a) und b) den Graph von $ f $ im Intervall [-2,5; 2,5].
Prüfen Sie mit einer Rechnung, ob der Punkt $ \EPUNKT{P}{-1}{3} $ auf dem Graphen von $ f $ liegt.
Wie kann der Graph von $ f $ verschoben werden, damit die Funktion nur noch 2 Nullstellen hat?
Ein Möbelhaus verkauft Aufbewahrungsschachteln. Ein Set besteht aus fünf verschieden großen Schachteln, die ineinander untergebracht werden. Die Breite der Schachteln ist immer um $ 3\,\mathrm{cm} $ kürzer als die Länge $ x $ und die Höhe ist immer halb so groß wie die Länge.

Drücken Sie die Breite $ b $ und die Höhe $ h $ in Abhängigkeit von der Länge $ x $ aus.
Zeigen Sie damit, dass die Funktion $ V(x) = \frac{1}{2}x^3 - \frac{3}{2}x^2 $ das Volumen dieser Schachteln in $ \mathrm{cm^3} $ beschreiben kann.
Welchen Grad hat $ V $? Geben Sie alle Koeffizienten an.
Skizzieren Sie den Graphen der Funktion im Intervall [-1; 4].
Ermitteln Sie dazu die Achsenschnittpunkte und verwenden Sie eine kleine Wertetabelle.
Welchen Definitionsbereich hat die Funktion bezogen auf das praktische Problem?
Markieren Sie die Stelle $ x $, ab welcher die Volumensfunktion einen Sinn ergibt und begründen Sie Ihre Meinung.
Weitere Arbeitsblätter
Anwendungsaufgaben Dreiecksmessung
59 min, 5 Aufgaben #7020Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.
Polynomdivision und mittlere Änderungsrate
35 min, 6 Aufgaben #1551Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
Übungen zu kombinatorischen Abzählverfahren
29 min, 8 Aufgaben #1648Ob mit oder ohne Reihenfolge und mit oder ohne Wiederholung: die Frage, die sich stellt, ist immer die gleiche: wie viele Möglichkeiten gibt es? Bei den Aufgaben kommt man noch häufig durch Abzählen zur Lösung.
Ikarus Abitur GK Berlin 2016
64 min, 6 Aufgaben #1980Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Prozentrechnung - Grundlagen
81 min, 5 Aufgaben #0100Hier geht es um pures Rechnen. Zunächst wird der Zusammenhang von Prozenten und Brüchen geübt und im Anschluss die drei grundlegenden Aufgabentypen der Prozentrechnung.