Einleitung
Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.
49 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.
Aufgaben
Gegeben sei die Funktion $ f(x) = x^4 - 5x^2 + 6 $.
Untersuchen Sie $ f $ auf Symmetrie und dem Verhalten im Unendlichen.
Ermitteln Sie alle Achsenschnittpunkte.
Skizzieren Sie mit den Ergebnissen aus a) und b) den Graph von $ f $ im Intervall [-2,5; 2,5].
Prüfen Sie mit einer Rechnung, ob der Punkt $ \EPUNKT{P}{-1}{3} $ auf dem Graphen von $ f $ liegt.
Wie kann der Graph von $ f $ verschoben werden, damit die Funktion nur noch 2 Nullstellen hat?
Ein Möbelhaus verkauft Aufbewahrungsschachteln. Ein Set besteht aus fünf verschieden großen Schachteln, die ineinander untergebracht werden. Die Breite der Schachteln ist immer um $ 3\,\mathrm{cm} $ kürzer als die Länge $ x $ und die Höhe ist immer halb so groß wie die Länge.

Drücken Sie die Breite $ b $ und die Höhe $ h $ in Abhängigkeit von der Länge $ x $ aus.
Zeigen Sie damit, dass die Funktion $ V(x) = \frac{1}{2}x^3 - \frac{3}{2}x^2 $ das Volumen dieser Schachteln in $ \mathrm{cm^3} $ beschreiben kann.
Welchen Grad hat $ V $? Geben Sie alle Koeffizienten an.
Skizzieren Sie den Graphen der Funktion im Intervall [-1; 4].
Ermitteln Sie dazu die Achsenschnittpunkte und verwenden Sie eine kleine Wertetabelle.
Welchen Definitionsbereich hat die Funktion bezogen auf das praktische Problem?
Markieren Sie die Stelle $ x $, ab welcher die Volumensfunktion einen Sinn ergibt und begründen Sie Ihre Meinung.
Weitere Arbeitsblätter
BBR - Vergleichsarbeit Mathematik
59 min, 14 Aufgaben #2508Die Vergleichende Arbeit 2015 im Fach Mathematik zum Erwerb der Berufsbildungsreife bzw. des Hauptschulabschlusses. Bearbeitungszeit: 90 Minuten. Zugelassene Hilfsmittel: Formelübersicht und wissenschaftlicher nicht grafikfähiger Standard-Taschenrechner.
Wochenübung - besondere quadratische Gleichungen
89 min, 6 Aufgaben #0065Für sechs Tage gibt es täglich 4 Aufgaben. Eine Bruchgleichung, eine biquadratische Gleichung, eine Gleichung 3. Grades ohne Absolutglied und eine zum Knobeln.
Ableitungsfunktion und ihre Anwendung
92 min, 12 Aufgaben #1590Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.
Lernkontrolle Potenzen
39 min, 8 Aufgaben #0994Verschiedene Aufgaben zu Zehnerpotenzen. Zwei Textaufgaben inklusive. Bei den zwei letzten Aufgaben müssen mit Hilfe von Potenzgesetzen Terme vereinfacht werden.