Einleitung
Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.
49 Minuten Erklärungen in 3 Aufgaben von Koonys Schule.
Aufgaben
Gegeben sei die Funktion $ f(x) = x^4 - 5x^2 + 6 $.
Untersuchen Sie $ f $ auf Symmetrie und dem Verhalten im Unendlichen.
Ermitteln Sie alle Achsenschnittpunkte.
Skizzieren Sie mit den Ergebnissen aus a) und b) den Graph von $ f $ im Intervall [-2,5; 2,5].
Prüfen Sie mit einer Rechnung, ob der Punkt $ \EPUNKT{P}{-1}{3} $ auf dem Graphen von $ f $ liegt.
Wie kann der Graph von $ f $ verschoben werden, damit die Funktion nur noch 2 Nullstellen hat?
Ein Möbelhaus verkauft Aufbewahrungsschachteln. Ein Set besteht aus fünf verschieden großen Schachteln, die ineinander untergebracht werden. Die Breite der Schachteln ist immer um $ 3\,\mathrm{cm} $ kürzer als die Länge $ x $ und die Höhe ist immer halb so groß wie die Länge.

Drücken Sie die Breite $ b $ und die Höhe $ h $ in Abhängigkeit von der Länge $ x $ aus.
Zeigen Sie damit, dass die Funktion $ V(x) = \frac{1}{2}x^3 - \frac{3}{2}x^2 $ das Volumen dieser Schachteln in $ \mathrm{cm^3} $ beschreiben kann.
Welchen Grad hat $ V $? Geben Sie alle Koeffizienten an.
Skizzieren Sie den Graphen der Funktion im Intervall [-1; 4].
Ermitteln Sie dazu die Achsenschnittpunkte und verwenden Sie eine kleine Wertetabelle.
Welchen Definitionsbereich hat die Funktion bezogen auf das praktische Problem?
Markieren Sie die Stelle $ x $, ab welcher die Volumensfunktion einen Sinn ergibt und begründen Sie Ihre Meinung.
Weitere Arbeitsblätter
Glücksrad mit Urne - Übungsaufgabe Stochastik LK
21 min, 6 Aufgaben #1710Eine Übungsaufgabe, die Urne und Glücksrad kombiniert. Nebst Baumdiagrammen, Bernoulli und der summierten Binomialverteilung werden auch Gewinnerwartung und Prozentrechnung beim Kreis benötigt.
Mathematische Kompetenzen - Zufall
15 min, 6 Aufgaben #0008Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.
Klassenarbeit binomische Formeln
33 min, 8 Aufgaben #3132Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.
Extremwertaufgaben
72 min, 7 Aufgaben #1599Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
Gauß Verfahren
84 min, 7 Aufgaben #1777Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.