Einleitung
Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016.
Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.
64 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Weidezelte werden in der Landwirtschaft vielfältig genutzt. Sie bestehen aus einem Gerüst aus Stahlrohren, welches mit einer Plane bespannt ist, siehe Abbildung rechts.

Hersteller A nutzt für die Konstruktion der bogenförmigen Rohre als Modell den Graphen $ G_f $ der Funktion $ f(x) = -e^{0,3x^2} + 5,\, x \in \RR $. Dabei liegt die $ x $-Achse in der Höhe des Erdbodens, die $ y $-Achse verläuft durch den höchsten Punkt von $ G_f $. %, siehe Abbildung 2.
Zeigen Sie, dass $ x_{1,2} \approx \pm 2,3 $ die Nullstellen von $ f $ sind und bestimmen Sie die Koordinaten des Schnittpunktes von $ G_f $ mit der $ y $-Achse.
Geben Sie die Höhe und die Breite des Weidezeltes an ($ 1\,\mathrm{LE} = 1\,\mathrm{m} $).
Zeigen Sie rechnerisch, dass der Graph von $ G_f $ der Funktion $ f $ genau einen Extrempunkt besitzt und dieser ein Hochpunkt ist. Geben Sie die Koordinaten des Hochpunktes an und weisen Sie rechnerisch nach, dass es keine Wendepunkte gibt.
( Zur Kontrolle: $ f''(x) = e^{0,3x^2} (-0,6-0,36x^2) $)
Für die Tierhaltung nutzt man häufig für die Frontflächen Planen mit eingearbeiteten, lichtdurchlässigen Windschutznetzen. In der Abbildung rechts ist ein solches rechteckiges Netz dargestellt. Seine untere Begrenzung befindet sich in $ 2\,\mathrm{m} $ Höhe.

Der Flächeninhalt des Netzes soll möglichst groß sein. Stellen Sie eine Zielfunktion, also eine Funktion für den Flächeninhalt des Rechtecks, auf.
Zeigen Sie, dass bei einer Breite des Rechtecks von rund $ 2,46\,\mathrm{m} $ der Flächeninhalt extremal ist.
( Auf die Überprüfung mithilfe der 2. Ableitung wird verzichtet.)
Hersteller B stellt das Gerüst der Frontfläche aus drei Stahlrohren her, sie Abbildung rechts.
Das Teilstück III wird mit dem Graphen $ G_p $ der Funktion $ p $ mit $ p(x) = ax^2 + b $ modelliert.
Entnehmen Sie der Abbildung die Koordinaten geeigneter Punkte und bestimmen Sie die Werte für $ a $ und $ b $.
( Zur Kontrolle: $ a = -0,5 $; $ b = 4 $)

Weidezelte, die für Lagerzwecke genutzt werden, werden häufig mit Planen für die Frontflächen versehen.
Ermitteln Sie die Größe der Frontfläche für das Zelt von Hersteller B.
Ein Bauer möchte im Weidezelt 10\,t Heu lagern. $ 1\,\mathrm{m^3} $ Heu hat eine Masse von 100kg.
Berechnen Sie, wie lang das Weidezelt dafür sein müsste.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Binomische Formeln
89 min, 11 Aufgaben #3120Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.
Pythagoras - Anwendungen
49 min, 6 Aufgaben #0040Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.
Textgleichungen mit Brüchen für Profis 3v3
56 min, 8 Aufgaben #1343Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.
Anwendungsaufgaben Dreiecksmessung
59 min, 5 Aufgaben #7020Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.
Anwendungsaufgaben Körper
13 min, 4 Aufgaben #9599Zusammengesetzte Aufgaben mit Zylindern, Kegeln und Kugeln bezüglich Volumen und Oberflächen. Kombiniert sind die Aufgaben mit Prozentrechnung, Dreisatz und Dichte.