Einleitung
Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
35 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Gegeben ist ein Polynom mit $f(x) = 1,25x^5-3x^3+1,1x$.
Liegt P(1 $\vert$ -1,5) auf dem Graphen?
Berechnen Sie alle Nullstellen des Polynoms.
Zeichnen Sie das Polynom in ein Koordinatensystem. Bestimmen Sie dazu auch jeweils einen Punkt zwischen den Nullstellen.
Geben Sie für die entsprechenden Intervalle die Monotonie an.
Gegeben ist das Polynom $g(x) = x^8 - 16x^6 - 5x-7$.
Prüfen Sie jeweils durch Polynomdivision, ob -4 und 1 Nullstellen der Funktion sind und begründen Sie ihre Entscheidung.
Könnte diese Funktion noch mehr Nullstellen haben? Begründen Sie ihre Entscheidung.
Betrachtungen zum Wetter.
Berechnen Sie für die Monate Mai bis Juli und Juli bis Oktober jeweils die mittlere Änderungsrate des Niederschlags mit dem Differenzenquotienten.
Machen Sie 2 bis 3 Aussagen zur Niederschlagsmenge auf der Grundlage ihrer Berechnungen.

Weitere Arbeitsblätter
Quadratische Gleichungen
74 min, 7 Aufgaben #0062Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.
Anwendungsaufgaben Dreiecksmessung
59 min, 5 Aufgaben #7020Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.
Klammern auflösen
35 min, 8 Aufgaben #3336Das Vereinfachen von Termen mit Klammern wird Stück für Stück gezeigt. Mit dabei sind Minusklammern, das einfache und das doppelte Distributivgesetz. Nach den Aufgaben ist man fachlich soweit sich als nächstes an die binomischen Formeln vagen zu können.
Arbeit - ganzrationale Funktionen
49 min, 3 Aufgaben #1520Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.
Klammern auflösen
51 min, 5 Aufgaben #3335Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz). Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.