Einleitung

Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.

35 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Untersuchen sie auf Symmetrie: $f(x) = 1,25x^4 - 3x^3 + 1,1x$.

2

Gegeben ist ein Polynom mit $f(x) = 1,25x^5-3x^3+1,1x$.

Liegt P(1 $\vert$ -1,5) auf dem Graphen?

Berechnen Sie alle Nullstellen des Polynoms.

Zeichnen Sie das Polynom in ein Koordinatensystem. Bestimmen Sie dazu auch jeweils einen Punkt zwischen den Nullstellen.

Geben Sie für die entsprechenden Intervalle die Monotonie an.

3

Gegeben ist das Polynom $g(x) = x^8 - 16x^6 - 5x-7$.

Prüfen Sie jeweils durch Polynomdivision, ob -4 und 1 Nullstellen der Funktion sind und begründen Sie ihre Entscheidung.

Könnte diese Funktion noch mehr Nullstellen haben? Begründen Sie ihre Entscheidung.

4

Testen Sie auf ganzzahlige Nullstellen: $f(x) = x^3-x^2+2x-6$.

5

Gegeben ist $f(x) = x^2 - 2x$.
Berechnen Sie die mittlere Steigung für [-2; 0] und [0; 3].

6

Betrachtungen zum Wetter.

Berechnen Sie für die Monate Mai bis Juli und Juli bis Oktober jeweils die mittlere Änderungsrate des Niederschlags mit dem Differenzenquotienten.

Machen Sie 2 bis 3 Aussagen zur Niederschlagsmenge auf der Grundlage ihrer Berechnungen.

Ein Bild aus der Koonys Schule Aufgabe fcf28.

PDF zum Drucken

Weitere Arbeitsblätter

Klassenarbeit Wachstum und Zerfall

38 min, 5 Aufgaben #6551

Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs. Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.

Extremwertaufgaben

80 min, 8 Aufgaben #1597

Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

Abzählverfahren

35 min, 6 Aufgaben #1651

Verschiedene Aufgaben mit Würfel-Würfen und Zahlen mit ihren Ziffern. Gefragt ist jedes mal nach der Wahrscheinlichkeit, dass ein bestimmtes Ereignis passiert. Schwierigkeit liegt darin herauszufinden, was die Anzahl aller Ergebnisse und die Anzahl der günstigen Ergebnisse ist.

Klassenarbeit - Rechnen mit Wurzeln

27 min, 9 Aufgaben #0993

Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.

Abschlussarbeit Klasse 9 mit Taschenrechner

38 min, 3 Aufgaben #2852

Aufgaben quer durch die 9. Klasse. Statistik, Diagramme, Volumenberechnungen am Kegel, Funktionen und mehr im Koordinatensystem. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum