Einleitung

Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.

35 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Untersuchen sie auf Symmetrie: $f(x) = 1,25x^4 - 3x^3 + 1,1x$.

2

Gegeben ist ein Polynom mit $f(x) = 1,25x^5-3x^3+1,1x$.

Liegt P(1 $\vert$ -1,5) auf dem Graphen?

Berechnen Sie alle Nullstellen des Polynoms.

Zeichnen Sie das Polynom in ein Koordinatensystem. Bestimmen Sie dazu auch jeweils einen Punkt zwischen den Nullstellen.

Geben Sie für die entsprechenden Intervalle die Monotonie an.

3

Gegeben ist das Polynom $g(x) = x^8 - 16x^6 - 5x-7$.

Prüfen Sie jeweils durch Polynomdivision, ob -4 und 1 Nullstellen der Funktion sind und begründen Sie ihre Entscheidung.

Könnte diese Funktion noch mehr Nullstellen haben? Begründen Sie ihre Entscheidung.

4

Testen Sie auf ganzzahlige Nullstellen: $f(x) = x^3-x^2+2x-6$.

5

Gegeben ist $f(x) = x^2 - 2x$.
Berechnen Sie die mittlere Steigung für [-2; 0] und [0; 3].

6

Betrachtungen zum Wetter.

Berechnen Sie für die Monate Mai bis Juli und Juli bis Oktober jeweils die mittlere Änderungsrate des Niederschlags mit dem Differenzenquotienten.

Machen Sie 2 bis 3 Aussagen zur Niederschlagsmenge auf der Grundlage ihrer Berechnungen.

Ein Bild aus der Koonys Schule Aufgabe fcf28.

PDF zum Drucken

Weitere Arbeitsblätter

Übungen zu kombinatorischen Abzählverfahren

29 min, 8 Aufgaben #1648

Ob mit oder ohne Reihenfolge und mit oder ohne Wiederholung: die Frage, die sich stellt, ist immer die gleiche: wie viele Möglichkeiten gibt es? Bei den Aufgaben kommt man noch häufig durch Abzählen zur Lösung.

Hemden mit Mängeln Abitur LK Berlin 2011

32 min, 6 Aufgaben #1720

Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.

Mathematische Kompetenzen - Zufall

15 min, 6 Aufgaben #0008

Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.

Quadratische Funktionen

53 min, 6 Aufgaben #0070

Eine Einführung in quadratische Funktionen. Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen. Ausblick könnte die quadratische Ergänzung sein.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum