Einleitung
Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
35 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Gegeben ist ein Polynom mit $f(x) = 1,25x^5-3x^3+1,1x$.
Liegt P(1 $\vert$ -1,5) auf dem Graphen?
Berechnen Sie alle Nullstellen des Polynoms.
Zeichnen Sie das Polynom in ein Koordinatensystem. Bestimmen Sie dazu auch jeweils einen Punkt zwischen den Nullstellen.
Geben Sie für die entsprechenden Intervalle die Monotonie an.
Gegeben ist das Polynom $g(x) = x^8 - 16x^6 - 5x-7$.
Prüfen Sie jeweils durch Polynomdivision, ob -4 und 1 Nullstellen der Funktion sind und begründen Sie ihre Entscheidung.
Könnte diese Funktion noch mehr Nullstellen haben? Begründen Sie ihre Entscheidung.
Betrachtungen zum Wetter.
Berechnen Sie für die Monate Mai bis Juli und Juli bis Oktober jeweils die mittlere Änderungsrate des Niederschlags mit dem Differenzenquotienten.
Machen Sie 2 bis 3 Aussagen zur Niederschlagsmenge auf der Grundlage ihrer Berechnungen.

Weitere Arbeitsblätter
Klassenarbeit Terme und Gleichungen
27 min, 4 Aufgaben #3749Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.
Lernkontrolle Wahrscheinlichkeitsrechnung
36 min, 4 Aufgaben #7392Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.
Arbeit - ganzrationale Funktionen
49 min, 3 Aufgaben #1520Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.
Quadratische Funktionen
53 min, 6 Aufgaben #0070Eine Einführung in quadratische Funktionen. Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen. Ausblick könnte die quadratische Ergänzung sein.
Übungen zu kombinatorischen Abzählverfahren
29 min, 8 Aufgaben #1648Ob mit oder ohne Reihenfolge und mit oder ohne Wiederholung: die Frage, die sich stellt, ist immer die gleiche: wie viele Möglichkeiten gibt es? Bei den Aufgaben kommt man noch häufig durch Abzählen zur Lösung.