Einleitung

Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.

35 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Untersuchen sie auf Symmetrie: $f(x) = 1,25x^4 - 3x^3 + 1,1x$.

2

Gegeben ist ein Polynom mit $f(x) = 1,25x^5-3x^3+1,1x$.

Liegt P(1 $\vert$ -1,5) auf dem Graphen?

Berechnen Sie alle Nullstellen des Polynoms.

Zeichnen Sie das Polynom in ein Koordinatensystem. Bestimmen Sie dazu auch jeweils einen Punkt zwischen den Nullstellen.

Geben Sie für die entsprechenden Intervalle die Monotonie an.

3

Gegeben ist das Polynom $g(x) = x^8 - 16x^6 - 5x-7$.

Prüfen Sie jeweils durch Polynomdivision, ob -4 und 1 Nullstellen der Funktion sind und begründen Sie ihre Entscheidung.

Könnte diese Funktion noch mehr Nullstellen haben? Begründen Sie ihre Entscheidung.

4

Testen Sie auf ganzzahlige Nullstellen: $f(x) = x^3-x^2+2x-6$.

5

Gegeben ist $f(x) = x^2 - 2x$.
Berechnen Sie die mittlere Steigung für [-2; 0] und [0; 3].

6

Betrachtungen zum Wetter.

Berechnen Sie für die Monate Mai bis Juli und Juli bis Oktober jeweils die mittlere Änderungsrate des Niederschlags mit dem Differenzenquotienten.

Machen Sie 2 bis 3 Aussagen zur Niederschlagsmenge auf der Grundlage ihrer Berechnungen.

Ein Bild aus der Koonys Schule Aufgabe fcf28.

PDF zum Drucken

Weitere Arbeitsblätter

Ableitungsfunktion und ihre Anwendung

92 min, 12 Aufgaben #1590

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

Kleine vermischte Übungen - Klasse 10

39 min, 13 Aufgaben #7400

Bunt gemischte Textaufgaben zu verschiedenen Themen der 10. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.

Diagnosetest konstruieren und argumentieren

36 min, 5 Aufgaben #4025

Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.

Extremwertaufgaben

80 min, 8 Aufgaben #1597

Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

kgV und ggT

50 min, 6 Aufgaben #0010

Primfaktorzerlegung, größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches nimmt die Hälfte des Blattes ein. Die andere Hälfte sind Anwendungsaufgaben.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum