Einleitung

Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.

35 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Untersuchen sie auf Symmetrie: $f(x) = 1,25x^4 - 3x^3 + 1,1x$.

2

Gegeben ist ein Polynom mit $f(x) = 1,25x^5-3x^3+1,1x$.

Liegt P(1 $\vert$ -1,5) auf dem Graphen?

Berechnen Sie alle Nullstellen des Polynoms.

Zeichnen Sie das Polynom in ein Koordinatensystem. Bestimmen Sie dazu auch jeweils einen Punkt zwischen den Nullstellen.

Geben Sie für die entsprechenden Intervalle die Monotonie an.

3

Gegeben ist das Polynom $g(x) = x^8 - 16x^6 - 5x-7$.

Prüfen Sie jeweils durch Polynomdivision, ob -4 und 1 Nullstellen der Funktion sind und begründen Sie ihre Entscheidung.

Könnte diese Funktion noch mehr Nullstellen haben? Begründen Sie ihre Entscheidung.

4

Testen Sie auf ganzzahlige Nullstellen: $f(x) = x^3-x^2+2x-6$.

5

Gegeben ist $f(x) = x^2 - 2x$.
Berechnen Sie die mittlere Steigung für [-2; 0] und [0; 3].

6

Betrachtungen zum Wetter.

Berechnen Sie für die Monate Mai bis Juli und Juli bis Oktober jeweils die mittlere Änderungsrate des Niederschlags mit dem Differenzenquotienten.

Machen Sie 2 bis 3 Aussagen zur Niederschlagsmenge auf der Grundlage ihrer Berechnungen.

Ein Bild aus der Koonys Schule Aufgabe fcf28.

PDF zum Drucken

Weitere Arbeitsblätter

Hypothesentests - Signifikanztests

68 min, 5 Aufgaben #1740

Aufgaben bei denen Nullhypothesen aufgestellt und mit Entscheidungsregeln angenommen oder verworfen werden. Es kommen einseitige und zweiseitige Signifikanztests vor.

Einführung Terme

65 min, 8 Aufgaben #2826

Erste Aufgaben zu Termen. Termwerte berechen, Terme vergleichen und Textgleichungen in beide Richtungen: sowohl Gleichungen aus Texten aufstellen aber auch Texte basierend auf Gleichungen verfassen. Die Hälfte der Aufgaben beschäftigt sich mit dem Zusammenfassen von Termen.

Pythagoras - Anwendungen

49 min, 6 Aufgaben #0040

Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.

Sinus - Kosinus - Tangens

41 min, 6 Aufgaben #7000

Sinus, Kosinus und Tangens von leicht bis schwer. Zunächst Aufgaben mit den Gleichungen und all ihren Varianten. Danach Standard-Aufgaben an rechtwinkligen Dreiecken und die zweite Hälfte sind Textaufgaben bei denen das gleiche noch einmal drankommt mit dem gewissen Etwas, das anspruchsvolle Aufgaben ausmacht.

Extremwertaufgaben

72 min, 7 Aufgaben #1599

Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum