Einleitung

Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken.
Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.

59 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

Was tun, wenn kein rechter Winkel bekannt ist?

1

Die Punkte A und B sind vom Punkt C durch unzugängliches Gelände getrennt.

Man misst $ \overline{AB} = 6\,\mathrm{km} $, $ \alpha = 75^\circ $ und $ \beta = 42^\circ $.

Wie weit sind A und B von C entfernt?

Ein Bild aus der Koonys Schule Aufgabe 2fe25.

2

Ein Schiff S peilt einen Leuchtturm L bei festem Kurs unter einem Winkel $ \alpha $ an und nach $ 8\,\mathrm{km} $ noch einmal unter dem Winkel $ \beta $.

Gemessen wurde $ \alpha = 40^\circ $ und $ \beta = 60^\circ $.

Wie groß waren zu den Zeitpunkten die Entfernungen zum Leuchtturm?

Ein Bild aus der Koonys Schule Aufgabe f4c05.

3

Vom Punkt P in einem Bergwerk werden 2 Stollen unter einem Winkel $ \alpha $ geradlinig in den Berg getrieben. Der Vortrieb zum Endpunkt S ist $ 1,5\,\mathrm{km} $ und der Vortrieb zum Endpunkt T $ 2\,\mathrm{km} $ lang. Der Winkel $ \alpha $ hat eine Größe von 55°.

Wie lang wäre ein geradliniger Verbindungsstollen von S nach T?

Ein Bild aus der Koonys Schule Aufgabe 70d5a.

4

Vom Punkt S beträgt die Entfernung zum geplanten Eingang E eines linearen Tunnels durch einen Berg $ 2\,\mathrm{km} $. Der Ausgang A ist vom Punkt S $ 8\,\mathrm{km} $ entfernt.

Der Winkel zwischen $ \overline{\mathrm{SE}} $ und $ \overline{\mathrm{SA}} $ beträgt 25°.

Wie lang wird der Tunnel?

Ein Bild aus der Koonys Schule Aufgabe 7cd5c.

PDF zum Drucken

Weitere Arbeitsblätter

Diagnosetest konstruieren und argumentieren

36 min, 5 Aufgaben #4025

Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.

Anwendungsaufgaben Körper

13 min, 4 Aufgaben #9599

Zusammengesetzte Aufgaben mit Zylindern, Kegeln und Kugeln bezüglich Volumen und Oberflächen. Kombiniert sind die Aufgaben mit Prozentrechnung, Dreisatz und Dichte.

Übungsaufgaben zur Stochastik

30 min, 6 Aufgaben #1654

Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.

Lineare Gleichungssysteme lösen

62 min, 7 Aufgaben #3820

Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren. Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen. Am Ende noch Übungen bei denen auch Brüche vorkommen.

Lichtkunst Abitur GK Hamburg

61 min, 6 Aufgaben #1945

Abituraufgabe aus der zentralen schriftlichen Abiturprüfung 2005 im Fach Mathematik aus Hamburg für den Grundkurs mit insgesamt 100 erreichbaren Punkten.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum