Einleitung

Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken.
Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.

59 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

Was tun, wenn kein rechter Winkel bekannt ist?

1

Die Punkte A und B sind vom Punkt C durch unzugängliches Gelände getrennt.

Man misst $ \overline{AB} = 6\,\mathrm{km} $, $ \alpha = 75^\circ $ und $ \beta = 42^\circ $.

Wie weit sind A und B von C entfernt?

Ein Bild aus der Koonys Schule Aufgabe 2fe25.

2

Ein Schiff S peilt einen Leuchtturm L bei festem Kurs unter einem Winkel $ \alpha $ an und nach $ 8\,\mathrm{km} $ noch einmal unter dem Winkel $ \beta $.

Gemessen wurde $ \alpha = 40^\circ $ und $ \beta = 60^\circ $.

Wie groß waren zu den Zeitpunkten die Entfernungen zum Leuchtturm?

Ein Bild aus der Koonys Schule Aufgabe f4c05.

3

Vom Punkt P in einem Bergwerk werden 2 Stollen unter einem Winkel $ \alpha $ geradlinig in den Berg getrieben. Der Vortrieb zum Endpunkt S ist $ 1,5\,\mathrm{km} $ und der Vortrieb zum Endpunkt T $ 2\,\mathrm{km} $ lang. Der Winkel $ \alpha $ hat eine Größe von 55°.

Wie lang wäre ein geradliniger Verbindungsstollen von S nach T?

Ein Bild aus der Koonys Schule Aufgabe 70d5a.

4

Vom Punkt S beträgt die Entfernung zum geplanten Eingang E eines linearen Tunnels durch einen Berg $ 2\,\mathrm{km} $. Der Ausgang A ist vom Punkt S $ 8\,\mathrm{km} $ entfernt.

Der Winkel zwischen $ \overline{\mathrm{SE}} $ und $ \overline{\mathrm{SA}} $ beträgt 25°.

Wie lang wird der Tunnel?

Ein Bild aus der Koonys Schule Aufgabe 7cd5c.

PDF zum Drucken

Weitere Arbeitsblätter

Übungen zu kombinatorischen Abzählverfahren

29 min, 8 Aufgaben #1648

Ob mit oder ohne Reihenfolge und mit oder ohne Wiederholung: die Frage, die sich stellt, ist immer die gleiche: wie viele Möglichkeiten gibt es? Bei den Aufgaben kommt man noch häufig durch Abzählen zur Lösung.

Extremwertaufgaben

72 min, 7 Aufgaben #1599

Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

Lern­kontrolle Wahr­scheinlich­keits­rechnung

36 min, 4 Aufgaben #7392

Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.

Terme und Gleichungen in Texten

57 min, 10 Aufgaben #1300

Das Arbeitsblatt besteht aus 3 Teilen. Aufgestellt werden müssen Terme (1), einfache Gleichungen (2), schwierige Gleichungen (3).

Quadratische Gleichungen

74 min, 7 Aufgaben #0062

Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum