Einleitung
Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken.
Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.
59 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Die Punkte A und B sind vom Punkt C durch unzugängliches Gelände getrennt.
Man misst $ \overline{AB} = 6\,\mathrm{km} $, $ \alpha = 75^\circ $ und $ \beta = 42^\circ $.
Wie weit sind A und B von C entfernt?

Ein Schiff S peilt einen Leuchtturm L bei festem Kurs unter einem Winkel $ \alpha $ an und nach $ 8\,\mathrm{km} $ noch einmal unter dem Winkel $ \beta $.
Gemessen wurde $ \alpha = 40^\circ $ und $ \beta = 60^\circ $.
Wie groß waren zu den Zeitpunkten die Entfernungen zum Leuchtturm?

Vom Punkt P in einem Bergwerk werden 2 Stollen unter einem Winkel $ \alpha $ geradlinig in den Berg getrieben. Der Vortrieb zum Endpunkt S ist $ 1,5\,\mathrm{km} $ und der Vortrieb zum Endpunkt T $ 2\,\mathrm{km} $ lang. Der Winkel $ \alpha $ hat eine Größe von 55°.
Wie lang wäre ein geradliniger Verbindungsstollen von S nach T?

Vom Punkt S beträgt die Entfernung zum geplanten Eingang E eines linearen Tunnels durch einen Berg $ 2\,\mathrm{km} $. Der Ausgang A ist vom Punkt S $ 8\,\mathrm{km} $ entfernt.
Der Winkel zwischen $ \overline{\mathrm{SE}} $ und $ \overline{\mathrm{SA}} $ beträgt 25°.
Wie lang wird der Tunnel?

PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Diagnosetest konstruieren und argumentieren
36 min, 5 Aufgaben #4025Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.
Anwendungsaufgaben Körper
13 min, 4 Aufgaben #9599Zusammengesetzte Aufgaben mit Zylindern, Kegeln und Kugeln bezüglich Volumen und Oberflächen. Kombiniert sind die Aufgaben mit Prozentrechnung, Dreisatz und Dichte.
Übungsaufgaben zur Stochastik
30 min, 6 Aufgaben #1654Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.
Lineare Gleichungssysteme lösen
62 min, 7 Aufgaben #3820Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren. Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen. Am Ende noch Übungen bei denen auch Brüche vorkommen.
Lichtkunst Abitur GK Hamburg
61 min, 6 Aufgaben #1945Abituraufgabe aus der zentralen schriftlichen Abiturprüfung 2005 im Fach Mathematik aus Hamburg für den Grundkurs mit insgesamt 100 erreichbaren Punkten.