Einleitung

Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken.
Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.

59 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

Was tun, wenn kein rechter Winkel bekannt ist?

1

Die Punkte A und B sind vom Punkt C durch unzugängliches Gelände getrennt.

Man misst $ \overline{AB} = 6\,\mathrm{km} $, $ \alpha = 75^\circ $ und $ \beta = 42^\circ $.

Wie weit sind A und B von C entfernt?

Ein Bild aus der Koonys Schule Aufgabe 2fe25.

2

Ein Schiff S peilt einen Leuchtturm L bei festem Kurs unter einem Winkel $ \alpha $ an und nach $ 8\,\mathrm{km} $ noch einmal unter dem Winkel $ \beta $.

Gemessen wurde $ \alpha = 40^\circ $ und $ \beta = 60^\circ $.

Wie groß waren zu den Zeitpunkten die Entfernungen zum Leuchtturm?

Ein Bild aus der Koonys Schule Aufgabe f4c05.

3

Vom Punkt P in einem Bergwerk werden 2 Stollen unter einem Winkel $ \alpha $ geradlinig in den Berg getrieben. Der Vortrieb zum Endpunkt S ist $ 1,5\,\mathrm{km} $ und der Vortrieb zum Endpunkt T $ 2\,\mathrm{km} $ lang. Der Winkel $ \alpha $ hat eine Größe von 55°.

Wie lang wäre ein geradliniger Verbindungsstollen von S nach T?

Ein Bild aus der Koonys Schule Aufgabe 70d5a.

4

Vom Punkt S beträgt die Entfernung zum geplanten Eingang E eines linearen Tunnels durch einen Berg $ 2\,\mathrm{km} $. Der Ausgang A ist vom Punkt S $ 8\,\mathrm{km} $ entfernt.

Der Winkel zwischen $ \overline{\mathrm{SE}} $ und $ \overline{\mathrm{SA}} $ beträgt 25°.

Wie lang wird der Tunnel?

Ein Bild aus der Koonys Schule Aufgabe 7cd5c.

PDF zum Drucken

Weitere Arbeitsblätter

Klausur Differentialrechnung

42 min, 5 Aufgaben #1565

Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.

Strahlensätze **

54 min, 6 Aufgaben #4182

Drei Schenkel, verdrehte Skizzen, Erbsen und der Mond sowie Bergspitzen. Das Prinzip ist das Gleiche, aber die Schwierigkeit ist doch um einiges größer als sonst. Das nächste Level an Strahlensatzaufgaben sozusagen.

Übungsaufgaben zur Stochastik

30 min, 6 Aufgaben #1654

Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.

Abzählverfahren

35 min, 6 Aufgaben #1651

Verschiedene Aufgaben mit Würfel-Würfen und Zahlen mit ihren Ziffern. Gefragt ist jedes mal nach der Wahrscheinlichkeit, dass ein bestimmtes Ereignis passiert. Schwierigkeit liegt darin herauszufinden, was die Anzahl aller Ergebnisse und die Anzahl der günstigen Ergebnisse ist.

Wochenübung mit Klammern und Gleichungen

29 min, 7 Aufgaben #1234

7 Aufgaben für 7 Tage. Es müssen Klammern aufgelöst, Terme zusammengefasst und vor allem Gleichungen gelöst werden. Dabei treten unter anderem auch mal Brüche, die binomischen Formeln und die pq-Formel mit auf.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum