Einleitung
Abituraufgabe aus der zentralen schriftlichen Abiturprüfung 2005 im Fach Mathematik aus Hamburg für den Grundkurs mit insgesamt 100 erreichbaren Punkten.
61 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Das neueste Werk eines jungen Künstlers besteht aus einer Skulptur und zwei starren Stromschienen, die von einer Wand (x-z-Ebene) zur anderen Wand (y-z-Ebene) verlaufen. Auf diesen Schienen können Lampen bewegt werden, um die Skulptur zu beleuchten. Da die Schienen nur einen Durchmesser von 4cm haben, soll diese Ausdehnung in den Rechnungen vernachlässigt werden. Die Schienen werden also als Teile von Geraden angesehen. Die beiden Stromschienen sind an den Wänden befestigt und verbinden die Punkte $ \RPUNKT{P_1}{10}{0}{3} $ und $ \RPUNKT{Q_1}{0}{6}{6} $ bzw. $ \RPUNKT{P_2}{8}{0}{5} $ und $ \RPUNKT{Q_2}{0}{8}{4} $. ($ 1\,\mathrm{LE} \equiv 1\,\mathrm{m} $)
Bestimmen Sie die Gleichungen der Geraden $ g_1 $ und $ g_2 $, die den Verlauf der Stromschienen beschreiben und zeichnen Sie die Stromschienen in ein geeignetes Koordinatensystem ein.
Der Verkürzungsfaktor in x-Richtung beträgt $ 0,5\cdot \sqrt{2} $ und der Winkel zwischen x- und y-Achse ist $ 135^\circ $ groß.
In den Punkten $ \RPUNKT{L_1}{5}{3}{4,5} $ und $ \RPUNKT{L_2}{2}{6}{4,25} $ befinden sich Lampen, die als punktförmige Lichtquellen betrachtet werden können.
Weisen Sie nach, dass $ \mathrm{L_1} $ auf $ g_1 $ liegt und $ \mathrm{L_2} $ auf $ g_2 $, und bestimmen Sie den Abstand der beiden Lampen voneinander.
Zeichnen Sie die Lampenpunkte in das Koordinatensystem ein.
Der höchste Punkt der Skulptur sei $ \RPUNKT{S}{2}{4}{2,25} $. Der Künstler möchte, dass der Schatten dieser Skulpturenspitze noch auf den Fußboden des Raumes (x-y-Ebene) und nicht auf eine Wand fällt.
Zeigen Sie, dass unter dieser Bedingung nur eine der beiden Lampen eingeschaltet werden darf.
Bestimmen sie den Schattenpunkt R auf dem Fußboden des Raumes und zeichnen Sie R und S in das Koordinatensystem ein.
An die Stromschienen sollen neue Lampen angebracht werden, die von der Schiene $ 0,2\,\mathrm{m}$ vertikal herunterhängen. Beurteilen Sie, ob dies möglich ist, ohne dass dadurch die freie Beweglichkeit der Lampen auf der gesamten oberen Schiene durch die untere Schiene eingeschränkt wird.
Hinweis: Skizzieren Sie die vertikale Projektion der Schienen auf die x-y-Ebene, d.h. die z-Komponente ist Null und betrachten Sie den Höhenunterschied der Schienen über dem Schnittpunkt der Projektionsgeraden.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Polynomdivision und mittlere Änderungsrate
35 min, 6 Aufgaben #1551Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
Textgleichungen mit Brüchen für Profis 3v3
56 min, 8 Aufgaben #1343Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.
Prozentrechnung - Grundlagen
81 min, 5 Aufgaben #0100Hier geht es um pures Rechnen. Zunächst wird der Zusammenhang von Prozenten und Brüchen geübt und im Anschluss die drei grundlegenden Aufgabentypen der Prozentrechnung.
Wurzelterme vereinfachen ohne Taschenrechner
41 min, 13 Aufgaben #0990Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.
Felder und Kreise - GK Klausur Physik
40 min, 3 Aufgaben #6123Originale Physik Klausur für einen Grundkurs im 2. Semester aus Berlin. 39 Punkte, 90min