Einleitung

Abituraufgabe aus der zentralen schriftlichen Abiturprüfung 2005 im Fach Mathematik aus Hamburg für den Grundkurs mit insgesamt 100 erreichbaren Punkten.

61 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

Das neueste Werk eines jungen Künstlers besteht aus einer Skulptur und zwei starren Stromschienen, die von einer Wand (x-z-Ebene) zur anderen Wand (y-z-Ebene) verlaufen. Auf diesen Schienen können Lampen bewegt werden, um die Skulptur zu beleuchten. Da die Schienen nur einen Durchmesser von 4cm haben, soll diese Ausdehnung in den Rechnungen vernachlässigt werden. Die Schienen werden also als Teile von Geraden angesehen. Die beiden Stromschienen sind an den Wänden befestigt und verbinden die Punkte $ \RPUNKT{P_1}{10}{0}{3} $ und $ \RPUNKT{Q_1}{0}{6}{6} $ bzw. $ \RPUNKT{P_2}{8}{0}{5} $ und $ \RPUNKT{Q_2}{0}{8}{4} $. ($ 1\,\mathrm{LE} \equiv 1\,\mathrm{m} $)

1

Bestimmen Sie die Gleichungen der Geraden $ g_1 $ und $ g_2 $, die den Verlauf der Stromschienen beschreiben und zeichnen Sie die Stromschienen in ein geeignetes Koordinatensystem ein.

Der Verkürzungsfaktor in x-Richtung beträgt $ 0,5\cdot \sqrt{2} $ und der Winkel zwischen x- und y-Achse ist $ 135^\circ $ groß.

2

Zeigen Sie, dass sichergestellt ist, dass die Stromschienen sich nicht berühren.

3

In den Punkten $ \RPUNKT{L_1}{5}{3}{4,5} $ und $ \RPUNKT{L_2}{2}{6}{4,25} $ befinden sich Lampen, die als punktförmige Lichtquellen betrachtet werden können.

Weisen Sie nach, dass $ \mathrm{L_1} $ auf $ g_1 $ liegt und $ \mathrm{L_2} $ auf $ g_2 $, und bestimmen Sie den Abstand der beiden Lampen voneinander.

Zeichnen Sie die Lampenpunkte in das Koordinatensystem ein.

4

Der höchste Punkt der Skulptur sei $ \RPUNKT{S}{2}{4}{2,25} $. Der Künstler möchte, dass der Schatten dieser Skulpturenspitze noch auf den Fußboden des Raumes (x-y-Ebene) und nicht auf eine Wand fällt.

Zeigen Sie, dass unter dieser Bedingung nur eine der beiden Lampen eingeschaltet werden darf.

Bestimmen sie den Schattenpunkt R auf dem Fußboden des Raumes und zeichnen Sie R und S in das Koordinatensystem ein.

5

An die Stromschienen sollen neue Lampen angebracht werden, die von der Schiene $ 0,2\,\mathrm{m}$ vertikal herunterhängen. Beurteilen Sie, ob dies möglich ist, ohne dass dadurch die freie Beweglichkeit der Lampen auf der gesamten oberen Schiene durch die untere Schiene eingeschränkt wird.

Hinweis: Skizzieren Sie die vertikale Projektion der Schienen auf die x-y-Ebene, d.h. die z-Komponente ist Null und betrachten Sie den Höhenunterschied der Schienen über dem Schnittpunkt der Projektionsgeraden.

Weitere Arbeitsblätter

Kreise - Anwendung

67 min, 6 Aufgaben #8889

Flächen- und Umfangsformel des Kreises müssen in verschiedenen Aufgaben flexibel und mehrschrittig eingesetzt werden.

Abzählverfahren

35 min, 6 Aufgaben #1651

Verschiedene Aufgaben mit Würfel-Würfen und Zahlen mit ihren Ziffern. Gefragt ist jedes mal nach der Wahrscheinlichkeit, dass ein bestimmtes Ereignis passiert. Schwierigkeit liegt darin herauszufinden, was die Anzahl aller Ergebnisse und die Anzahl der günstigen Ergebnisse ist.

Teilweises Wurzelziehen - Rationalmachen des Nenners

52 min, 11 Aufgaben #0992

Aufgaben zum teilweisen, auch partiellen, Wurzelziehen mit Zahlen, Variablen und Faktorisieren. Einfache Aufgaben zum Rationalmachen des Nenners.

Terme und Gleichungen - Arbeit

0 min, 9 Aufgaben #TUGAA

41 Punkte Klassenarbeit für die 8. Klasse: Umfassendes Arbeitsblatt zu Termen und Gleichungen. Enthält Aufgaben zur Vereinfachung von Termen, Multiplikation, Anwendung der binomischen Formeln, Klammerauflösung, Bestimmung von Lösungsmengen und Sachaufgaben. Perfekt zur Überprüfung und Vertiefung algebraischer Fähigkeiten.

Lernkontrolle Potenzen

39 min, 8 Aufgaben #0994

Verschiedene Aufgaben zu Zehnerpotenzen. Zwei Textaufgaben inklusive. Bei den zwei letzten Aufgaben müssen mit Hilfe von Potenzgesetzen Terme vereinfacht werden.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum