Einleitung
Aufgaben von leicht nach schwerer zum Üben.
61 Minuten Erklärungen in 10 Aufgaben von Mathe mit Rick und Koonys Schule.
Aufgaben
Berechne die folgenden unbestimmten Integrale.
$\int x^3\,\mathrm{d}x$
$\int x^4\,\mathrm{d}x$
$\int x^5\,\mathrm{d}x$
$\int m\cdot x^{10}\,\mathrm{d}x$
Berechnen Sie die folgenden unbestimmten Integrale.
$\int (x^3 + 5)\,\mathrm{d}x$
$\int (x^4 + 2)\,\mathrm{d}x$
$\int (x^5 - 1)\,\mathrm{d}x$
Berechne die unbestimmten Integrale.
$\int (x^3 + x)\,\mathrm{d}x$
$\int (x^4 + x^3)\,\mathrm{d}x$
$\int (x^5 - x)\,\mathrm{d}x$
Berechne die folgenden unbestimmten Integrale.
$\int (4x^3 + 2x)\,\mathrm{d}x$
$\int (2x^4 + 4x)\,\mathrm{d}x$
$\int (6x^3 - 6x^2)\,\mathrm{d}x$
Berechne die folgenden unbestimmten Integrale.
$ \int (2x^4+5x^3) \,\mathrm{d}x $
$ \int (6x^5-x^2) \,\mathrm{d}x $
$ \int (2x^4 - 2x^3) \,\mathrm{d}x $
Weitere Arbeitsblätter
Klassenarbeit Wachstum und Zerfall
38 min, 5 Aufgaben #6551Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs. Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.
Abzählverfahren
54 min, 7 Aufgaben #1650Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.
Gauß Verfahren
84 min, 7 Aufgaben #1777Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.
Aus 3 mach 4 - Abitur GK Berlin 2008
23 min, 5 Aufgaben #1987Original Abiturprüfung aus Berlin für den Grundkurs mit einem Glücksspielautomat. Mit dabei war die Kombinatorik, stochastische Unabhängigkeit, Bernoulli-Ketten, mindestens-mindestens Aufgabe und ein Hypothesentest.
Klassenarbeit binomische Formeln
33 min, 8 Aufgaben #3132Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.