Einleitung
Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien.
Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.
54 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
An einem Tisch befinden sich 8 freie Sitzplätze. Auf wie viele Arten können sich 4 Personen auf diese Plätze verteilen?
Ein Eisenwarengeschäft führt Nägel in 8 verschiedenen Längen, die jeweils in 3 verschiedenen Stärken vorhanden sind, verzinkt und unverzinkt. Das Geschäft bietet jeweils 4 verschiedene Packungsgrößen an.
Wie viele verschiedene Angebotsvarianten gibt es?
Ein Vertreter möchte 8 Firmen besuchen. Wie viele verschiedene Variationen kann er für seine Fahrtroute wählen?
An einem Fußballturnier nehmen 8 Mannschaften teil. Wie viele Endspielkombinationen sind möglich?
In einer Stadt gibt es 5000 Telefonanschlüsse. Wie viele Gesprächspaarungen sind möglich?
Aus einer Klasse mit 25 Schülern sollen drei Schüler abgeordnet werden. Wie viele Gruppenzusammenstellungen sind möglich?
Wie groß ist die Wahrscheinlichkeit, dass man beim Lotto „6 aus 49“ mit einem abgegebenen Tipp genau vier Richtige erzielt?
Bei einer Silvester-Party stößt um Mitternacht jeder der 7 Party-Gäste mit dem Sektglas mit jedem Gast an. Wie oft klingen die Gläser?
Auf einem Rummelplatz wird ein Minilotto „4 aus 16“ angeboten. Der Spieleinsatz beträgt pro Tipp 1€. Die Auszahlungsquoten lauten 10€ bei 3 Richtigen und 1000€ bei 4 Richtigen. Mit welchem mittleren Gewinn kann der Veranstalter pro Tipp rechnen?
In einer Urne befinden sich 5 rote, 3 weiße und 6 schwarze Kugeln. 3 Kugeln werden ohne Zurücklegen gezogen. Mit welcher Wahrscheinlichkeit sind sie alle verschiedenfarbig (alle rot, alle gleichfarbig)?
In einer Sendung von 80 Batterien befinden sich 10 defekte. Mit welcher Wahrscheinlichkeit enthält eine Stichprobe von 5 Batterien genau eine (genau 3, höchstens 4, mindestens eine) defekte Batterie?
Weitere Arbeitsblätter
Strahlensätze **
54 min, 6 Aufgaben #4182Drei Schenkel, verdrehte Skizzen, Erbsen und der Mond sowie Bergspitzen. Das Prinzip ist das Gleiche, aber die Schwierigkeit ist doch um einiges größer als sonst. Das nächste Level an Strahlensatzaufgaben sozusagen.
Klausurvorbereitung - Analysis - NRW
16 min, 3 Aufgaben #1581Beispielaufgaben für die zentralen Klausuren aus Nordrhein-Westfalen vom Schulministerium. Es wird vor allem das Verständnis der Ableitungsfunktion geprüft. Wachstumsgeschwindigkeiten, Funktionsgleichungen von Tangenten und Skizzen kommen vor.
Wichtige Formeln im Gebäudeenergiegesetz
0 min, 4 Aufgaben #PQUVIn diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.
Flächensätze - Vorwissen I
31 min, 7 Aufgaben #0037Verschiedene grundlegende Aufgaben zu Flächensätze. Der Umgang mit dem für das Thema wichtigen Gleichungen, Flächen- und Winkelberechnungen, sowie erste einfache Aufgaben mit dem Satz des Pythagoras kommen dran.
Prozentrechnung - Grundlagen
81 min, 5 Aufgaben #0100Hier geht es um pures Rechnen. Zunächst wird der Zusammenhang von Prozenten und Brüchen geübt und im Anschluss die drei grundlegenden Aufgabentypen der Prozentrechnung.