Einleitung

Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien.
Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.

54 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

An einem Tisch befinden sich 8 freie Sitzplätze. Auf wie viele Arten können sich 4 Personen auf diese Plätze verteilen?

Ein Eisenwarengeschäft führt Nägel in 8 verschiedenen Längen, die jeweils in 3 verschiedenen Stärken vorhanden sind, verzinkt und unverzinkt. Das Geschäft bietet jeweils 4 verschiedene Packungsgrößen an.

Wie viele verschiedene Angebotsvarianten gibt es?

Ein Vertreter möchte 8 Firmen besuchen. Wie viele verschiedene Variationen kann er für seine Fahrtroute wählen?

2

An einem Fußballturnier nehmen 8 Mannschaften teil. Wie viele Endspielkombinationen sind möglich?

In einer Stadt gibt es 5000 Telefonanschlüsse. Wie viele Gesprächspaarungen sind möglich?

Aus einer Klasse mit 25 Schülern sollen drei Schüler abgeordnet werden. Wie viele Gruppenzusammenstellungen sind möglich?

3

Wie groß ist die Wahrscheinlichkeit, dass man beim Lotto „6 aus 49“ mit einem abgegebenen Tipp genau vier Richtige erzielt?

4

Bei einer Silvester-Party stößt um Mitternacht jeder der 7 Party-Gäste mit dem Sektglas mit jedem Gast an. Wie oft klingen die Gläser?

5

Auf einem Rummelplatz wird ein Minilotto „4 aus 16“ angeboten. Der Spieleinsatz beträgt pro Tipp 1€. Die Auszahlungsquoten lauten 10€ bei 3 Richtigen und 1000€ bei 4 Richtigen. Mit welchem mittleren Gewinn kann der Veranstalter pro Tipp rechnen?

6

In einer Urne befinden sich 5 rote, 3 weiße und 6 schwarze Kugeln. 3 Kugeln werden ohne Zurücklegen gezogen. Mit welcher Wahrscheinlichkeit sind sie alle verschiedenfarbig (alle rot, alle gleichfarbig)?

7

In einer Sendung von 80 Batterien befinden sich 10 defekte. Mit welcher Wahrscheinlichkeit enthält eine Stichprobe von 5 Batterien genau eine (genau 3, höchstens 4, mindestens eine) defekte Batterie?

PDF zum Drucken

Weitere Arbeitsblätter

Extremwertaufgaben

72 min, 7 Aufgaben #1599

Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

Glücksrad mit Urne - Übungsaufgabe Stochastik LK

21 min, 6 Aufgaben #1710

Eine Übungsaufgabe, die Urne und Glücksrad kombiniert. Nebst Baumdiagrammen, Bernoulli und der summierten Binomialverteilung werden auch Gewinnerwartung und Prozentrechnung beim Kreis benötigt.

Wochenübung mit Klammern und Gleichungen

29 min, 7 Aufgaben #1234

7 Aufgaben für 7 Tage. Es müssen Klammern aufgelöst, Terme zusammengefasst und vor allem Gleichungen gelöst werden. Dabei treten unter anderem auch mal Brüche, die binomischen Formeln und die pq-Formel mit auf.

Gartenhaus Abitur GK Berlin 2016

62 min, 6 Aufgaben #1981

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Rechnen mit Dezimalbrüchen

58 min, 10 Aufgaben #0670

Viele Aufgaben zu den vier Hauptrechenarten mit Dezimalbrüchen. Schriftlich muss Plus, Minus, Mal und Durch benutzt werden.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum