Einleitung
Original Abiturprüfung aus Berlin für den Grundkurs mit einem Glücksspielautomat.
Mit dabei war die Kombinatorik, stochastische Unabhängigkeit, Bernoulli-Ketten, mindestens-mindestens Aufgabe und ein Hypothesentest.
23 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Der Glücksspielautomat erzeugt bei jedem Spiel aus den Ziffern 1,2 und 3 eine vierstellige Ziffernfolge. Dabei erscheint unter jeder der Stellen A, B, C und D unabhängig voeinander eine der Ziffern 1, 2 oder 3 mit gleicher Wahrscheinlichkeit. Es wird einmal gespielt.

Unter $ \mathrm{E_i} $ (mit i = 1, 2, 3, 4) wird das Ereignis Die Ziffer 1 erscheint bei einem Spiel genau i-mal verstanden.
Bestimmen Sie die Wahrscheinlichkeit der Ereignisse $ \mathrm{E_1} $ und $ \mathrm{E_2} $.
(Kontrollergebnis: $ P(\mathrm{E_2}) = \frac{8}{27} $)
Berechnen Sie die Wahrscheinlichkeiten für die beiden Ereignisse.
Es erscheinen ausschließlich gleiche Ziffern.
An der Stelle B erscheint die Ziffer 1.
Untersuchen Sie, ob die Ereignisse F und G stochastisch unabhängig sind.
Bestimmen Sie die Wahrscheinlichkeit dafür, dass bei 10 Spielen keine Ziffernfolge aus $ \mathrm{E_2} $ erzeugt wird.
Berechnen Sie die Anzahl der Spiele, die man mindestens spielen muss, damit mit einer Wahrscheinlichkeit von mehr als 99,9 % wenigstens einmal eine Ziffernfolge aus $ \mathrm{E_2} $ erzeugt wird.
Der Automat soll mit einer neuen Elektronik versehen werden. Bevor er damit in Spielhallen und Gaststätten aufgestellt werden darf, muss er bei der Physikalisch-Technischen Bundesanstalt aufwändige Testes bestehen (Bauartzulassung). Es wird unter anderem untersucht, ob es sich weiterhin um ein Laplace-Gerät handelt. Dazu wird die folgende Entscheidungsregel aufgestellt:
Wenn bei 100 Spielen mindestens 22-mal und höchstens 36-mal eine Ziffernfolge aus $ \mathrm{E_2} $ erscheint, dann wird die Laplace-Wahrscheinlichkeit angenommen, andernfalls nicht.
Berechnen Sie die Wahrscheinlichkeit dafür, dass mit dieser Entscheidungsregel ein tatsächliches Laplace-Gerät irrtümlich den Test nicht besteht.
Hinweis: Sie dürfen mit $ P(\mathrm{E_2}) \approx 0,3 $ als Näherungswert rechnen.
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Alle Erklärungen sind auch in einer
Weitere Arbeitsblätter
Klassenarbeit Terme und Gleichungen
27 min, 4 Aufgaben #3749Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.
Prozentrechnung - Grundlagen
81 min, 5 Aufgaben #0100Hier geht es um pures Rechnen. Zunächst wird der Zusammenhang von Prozenten und Brüchen geübt und im Anschluss die drei grundlegenden Aufgabentypen der Prozentrechnung.
Strahlensätze **
54 min, 6 Aufgaben #4182Drei Schenkel, verdrehte Skizzen, Erbsen und der Mond sowie Bergspitzen. Das Prinzip ist das Gleiche, aber die Schwierigkeit ist doch um einiges größer als sonst. Das nächste Level an Strahlensatzaufgaben sozusagen.
Klammern auflösen
35 min, 8 Aufgaben #3336Das Vereinfachen von Termen mit Klammern wird Stück für Stück gezeigt. Mit dabei sind Minusklammern, das einfache und das doppelte Distributivgesetz. Nach den Aufgaben ist man fachlich soweit sich als nächstes an die binomischen Formeln vagen zu können.
Lernkontrolle Wahrscheinlichkeitsrechnung
36 min, 4 Aufgaben #7392Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.