Einleitung
Original Abiturprüfung aus Berlin für den Grundkurs mit einem Glücksspielautomat.
Mit dabei war die Kombinatorik, stochastische Unabhängigkeit, Bernoulli-Ketten, mindestens-mindestens Aufgabe und ein Hypothesentest.
23 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Der Glücksspielautomat erzeugt bei jedem Spiel aus den Ziffern 1,2 und 3 eine vierstellige Ziffernfolge. Dabei erscheint unter jeder der Stellen A, B, C und D unabhängig voeinander eine der Ziffern 1, 2 oder 3 mit gleicher Wahrscheinlichkeit. Es wird einmal gespielt.

Unter $ \mathrm{E_i} $ (mit i = 1, 2, 3, 4) wird das Ereignis Die Ziffer 1 erscheint bei einem Spiel genau i-mal verstanden.
Bestimmen Sie die Wahrscheinlichkeit der Ereignisse $ \mathrm{E_1} $ und $ \mathrm{E_2} $.
(Kontrollergebnis: $ P(\mathrm{E_2}) = \frac{8}{27} $)
Berechnen Sie die Wahrscheinlichkeiten für die beiden Ereignisse.
Es erscheinen ausschließlich gleiche Ziffern.
An der Stelle B erscheint die Ziffer 1.
Untersuchen Sie, ob die Ereignisse F und G stochastisch unabhängig sind.
Bestimmen Sie die Wahrscheinlichkeit dafür, dass bei 10 Spielen keine Ziffernfolge aus $ \mathrm{E_2} $ erzeugt wird.
Berechnen Sie die Anzahl der Spiele, die man mindestens spielen muss, damit mit einer Wahrscheinlichkeit von mehr als 99,9 % wenigstens einmal eine Ziffernfolge aus $ \mathrm{E_2} $ erzeugt wird.
Der Automat soll mit einer neuen Elektronik versehen werden. Bevor er damit in Spielhallen und Gaststätten aufgestellt werden darf, muss er bei der Physikalisch-Technischen Bundesanstalt aufwändige Testes bestehen (Bauartzulassung). Es wird unter anderem untersucht, ob es sich weiterhin um ein Laplace-Gerät handelt. Dazu wird die folgende Entscheidungsregel aufgestellt:
Wenn bei 100 Spielen mindestens 22-mal und höchstens 36-mal eine Ziffernfolge aus $ \mathrm{E_2} $ erscheint, dann wird die Laplace-Wahrscheinlichkeit angenommen, andernfalls nicht.
Berechnen Sie die Wahrscheinlichkeit dafür, dass mit dieser Entscheidungsregel ein tatsächliches Laplace-Gerät irrtümlich den Test nicht besteht.
Hinweis: Sie dürfen mit $ P(\mathrm{E_2}) \approx 0,3 $ als Näherungswert rechnen.
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Alle Erklärungen sind auch in einer
Weitere Arbeitsblätter
Kreise - Anwendung
67 min, 6 Aufgaben #8889Flächen- und Umfangsformel des Kreises müssen in verschiedenen Aufgaben flexibel und mehrschrittig eingesetzt werden.
Extremwertaufgaben
80 min, 8 Aufgaben #1597Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
Bernoulli-Ketten
43 min, 4 Aufgaben #1700Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.
Kreise - Anwendung
59 min, 5 Aufgaben #8890In verschiedenen Anwendungsaufgaben müssen die Kreisformeln genutzt werden. Umstellen der Formeln, Kreisausschnitte, Prozent- und Geschwindigkeitsrechnung müssen darüber hinaus angewendet werden.
Arbeit - ganzrationale Funktionen
49 min, 3 Aufgaben #1520Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.