Einleitung

Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.

33 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

Lies dir alle Aufgaben gut durch und entscheide dann, mit welcher Aufgabe du beginnen willst.
Schreibe ordentlich und zeichne sauber mit Bleistift und Lineal.

1

Schreibe den Flächeninhalt als Produkt und als Summe.

Produkt: _________


Summe: _________

Ein Bild aus der Koonys Schule Aufgabe c3157.

2

Fülle die Lücken mit Hilfe der binomischen Formeln aus.

$ 9n^2 + 48mn + \text{__} = \left( \,\text{__} + 8m\right)^2 $

$ 169 - \text{__} = (\,\text{__} + \frac{1}{2})(\,\text{__} - \frac{1}{2}) $

$ z^2 - \,\text{__} + 144 = \left(\,\text{__} - 12\right)^2 $

3

Löse die Klammern auf und fasse, wenn möglich, zusammen.

$6\cdot (b-5)$

$ (-3a)\cdot(5a + 6b - 12) $

$ (x+5)(x+7) $

$ (6m+7n)(4m-n) $

4

Berichtige Maxs Ergebnisse auf der rechten Seite der Gleichung.

$ \left(4a+4\right)^2 = 16a^2 + 16a + 16 $

$\left(9x-8\right)^2 = 81x^2 - 126x + 64 $

$ 16y^2z^2 - 96xyz^2 + 144x^2z^2 = \left(4yz - 13xz\right)^2 $

5

Die Kinder Max und Angelika wollen ihre Zimmer tauschen. Angelikas altes Zimmer ist quadratisch. Maxs rechteckiges Zimmer ist im Vergleich zu dem quadratischen auf der einen Seite um $ 0,70\,\mathrm{m} $ verkürzt und auf der anderen Seite um $ 0,70\,\mathrm{m} $ verlängert. Sind die Zimmer gleich groß?

(Tipp: Stelle zuerst für jeden Flächeninhalt einen Term auf.)

6

Der Pausenhof des Bundestages soll neu gestaltet werden. Bisher ist eine quadratische Fläche $ x^2 $ mit Kies bedeckt. Die Rasenfläche erhält man, wenn man zur Kiesfläche an der einen Seite $ 2\,\mathrm{m} $ dazurechnet und an der anderen $ 4\,\mathrm{m} $ abzieht. Wie groß ist die Rasenfläche?

7

Zusatzaufgabe

Ein Bauer hat sein Kartoffelfeld vergrößert. Die neue Fläche beträgt: $ x^2 + 120x + 360 $. Um welche Länge (in m) hat der Bauer sein Feld auf jeder Seite erweitert?

PDF zum Drucken

Weitere Arbeitsblätter

Binomische Formeln

89 min, 11 Aufgaben #3120

Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.

Textgleichungen mit Brüchen für Profis 2v3

31 min, 7 Aufgaben #1342

Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.

Terme addieren und subtrahieren

43 min, 8 Aufgaben #2828

Terme vereinfachen indem man gleichartige Glieder zusammenfasst und ggf. vorher noch ein paar Klammern auflöst. Auch müssen Terme aufgestellt und Zahlenmauern gelöst werden.

Übungsaufgaben zur Wahrscheinlichkeitsrechnung

29 min, 4 Aufgaben #1656

Gewinnerwartung und Wahrscheinlichkeiten bei einem bzw. zwei Würfeln. Die Aufgaben beschäftigen sich hauptsächlich mit Baumdiagrammen und damit, aus dem Text herauszufinden was genau man zählen muss.

Prozentrechnung - Grundlagen

81 min, 5 Aufgaben #0100

Hier geht es um pures Rechnen. Zunächst wird der Zusammenhang von Prozenten und Brüchen geübt und im Anschluss die drei grundlegenden Aufgabentypen der Prozentrechnung.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum