Einleitung

Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.

33 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

Lies dir alle Aufgaben gut durch und entscheide dann, mit welcher Aufgabe du beginnen willst.
Schreibe ordentlich und zeichne sauber mit Bleistift und Lineal.

1

Schreibe den Flächeninhalt als Produkt und als Summe.

Produkt: _________


Summe: _________

Ein Bild aus der Koonys Schule Aufgabe c3157.

2

Fülle die Lücken mit Hilfe der binomischen Formeln aus.

$ 9n^2 + 48mn + \text{__} = \left( \,\text{__} + 8m\right)^2 $

$ 169 - \text{__} = (\,\text{__} + \frac{1}{2})(\,\text{__} - \frac{1}{2}) $

$ z^2 - \,\text{__} + 144 = \left(\,\text{__} - 12\right)^2 $

3

Löse die Klammern auf und fasse, wenn möglich, zusammen.

$6\cdot (b-5)$

$ (-3a)\cdot(5a + 6b - 12) $

$ (x+5)(x+7) $

$ (6m+7n)(4m-n) $

4

Berichtige Maxs Ergebnisse auf der rechten Seite der Gleichung.

$ \left(4a+4\right)^2 = 16a^2 + 16a + 16 $

$\left(9x-8\right)^2 = 81x^2 - 126x + 64 $

$ 16y^2z^2 - 96xyz^2 + 144x^2z^2 = \left(4yz - 13xz\right)^2 $

5

Die Kinder Max und Angelika wollen ihre Zimmer tauschen. Angelikas altes Zimmer ist quadratisch. Maxs rechteckiges Zimmer ist im Vergleich zu dem quadratischen auf der einen Seite um $ 0,70\,\mathrm{m} $ verkürzt und auf der anderen Seite um $ 0,70\,\mathrm{m} $ verlängert. Sind die Zimmer gleich groß?

(Tipp: Stelle zuerst für jeden Flächeninhalt einen Term auf.)

6

Der Pausenhof des Bundestages soll neu gestaltet werden. Bisher ist eine quadratische Fläche $ x^2 $ mit Kies bedeckt. Die Rasenfläche erhält man, wenn man zur Kiesfläche an der einen Seite $ 2\,\mathrm{m} $ dazurechnet und an der anderen $ 4\,\mathrm{m} $ abzieht. Wie groß ist die Rasenfläche?

7

Zusatzaufgabe

Ein Bauer hat sein Kartoffelfeld vergrößert. Die neue Fläche beträgt: $ x^2 + 120x + 360 $. Um welche Länge (in m) hat der Bauer sein Feld auf jeder Seite erweitert?

PDF zum Drucken

Weitere Arbeitsblätter

Klassenarbeit Wachstum und Zerfall

38 min, 5 Aufgaben #6551

Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs. Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.

Klassenarbeit Terme und Gleichungen

26 min, 5 Aufgaben #3750

Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.

Gauß Verfahren

84 min, 7 Aufgaben #1777

Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.

Stammfunktionen und Flächeninhalte

76 min, 8 Aufgaben #8010

Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)

Brüche kürzen und erweitern

64 min, 6 Aufgaben #0607

Das kleine Einmaleins wird hier sehr wichtig: Brüche kürzen und erweitern. Dazu stellt dieses Arbeitsblatt Aufgaben zur Verfügung.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum