Einleitung
Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.
33 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.
Aufgaben
Lies dir alle Aufgaben gut durch und entscheide dann, mit welcher Aufgabe du beginnen willst.
Schreibe ordentlich und zeichne sauber mit Bleistift und Lineal.
Fülle die Lücken mit Hilfe der binomischen Formeln aus.
$ 9n^2 + 48mn + \text{__} = \left( \,\text{__} + 8m\right)^2 $
$ 169 - \text{__} = (\,\text{__} + \frac{1}{2})(\,\text{__} - \frac{1}{2}) $
$ z^2 - \,\text{__} + 144 = \left(\,\text{__} - 12\right)^2 $
Löse die Klammern auf und fasse, wenn möglich, zusammen.
$6\cdot (b-5)$
$ (-3a)\cdot(5a + 6b - 12) $
$ (x+5)(x+7) $
$ (6m+7n)(4m-n) $
Berichtige Maxs Ergebnisse auf der rechten Seite der Gleichung.
$ \left(4a+4\right)^2 = 16a^2 + 16a + 16 $
$\left(9x-8\right)^2 = 81x^2 - 126x + 64 $
$ 16y^2z^2 - 96xyz^2 + 144x^2z^2 = \left(4yz - 13xz\right)^2 $
Die Kinder Max und Angelika wollen ihre Zimmer tauschen. Angelikas altes Zimmer ist quadratisch. Maxs rechteckiges Zimmer ist im Vergleich zu dem quadratischen auf der einen Seite um $ 0,70\,\mathrm{m} $ verkürzt und auf der anderen Seite um $ 0,70\,\mathrm{m} $ verlängert. Sind die Zimmer gleich groß?
(Tipp: Stelle zuerst für jeden Flächeninhalt einen Term auf.)
Der Pausenhof des Bundestages soll neu gestaltet werden. Bisher ist eine quadratische Fläche $ x^2 $ mit Kies bedeckt. Die Rasenfläche erhält man, wenn man zur Kiesfläche an der einen Seite $ 2\,\mathrm{m} $ dazurechnet und an der anderen $ 4\,\mathrm{m} $ abzieht. Wie groß ist die Rasenfläche?
Zusatzaufgabe
Ein Bauer hat sein Kartoffelfeld vergrößert. Die neue Fläche beträgt: $ x^2 + 120x + 360 $. Um welche Länge (in m) hat der Bauer sein Feld auf jeder Seite erweitert?
Weitere Arbeitsblätter
Hemden mit Mängeln Abitur LK Berlin 2011
32 min, 6 Aufgaben #1720Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.
Klassenarbeit - Rechnen mit Wurzeln
27 min, 9 Aufgaben #0993Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.
Übungen - konstruieren und argumentieren
69 min, 8 Aufgaben #4030Aufgaben zur Konstruktion von Dreiecken samt Inkreis, Umkreis und Schwerpunkt, sowie besondere Vierecke wie Raute und Drachenviereck. Alle schön verpackt in Textaufgaben.
Diagnosetest konstruieren und argumentieren
36 min, 5 Aufgaben #4025Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.
Strahlensätze *
27 min, 3 Aufgaben #4181Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.
