Einleitung
Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.
33 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.
Aufgaben
Lies dir alle Aufgaben gut durch und entscheide dann, mit welcher Aufgabe du beginnen willst.
Schreibe ordentlich und zeichne sauber mit Bleistift und Lineal.
Fülle die Lücken mit Hilfe der binomischen Formeln aus.
$ 9n^2 + 48mn + \text{__} = \left( \,\text{__} + 8m\right)^2 $
$ 169 - \text{__} = (\,\text{__} + \frac{1}{2})(\,\text{__} - \frac{1}{2}) $
$ z^2 - \,\text{__} + 144 = \left(\,\text{__} - 12\right)^2 $
Löse die Klammern auf und fasse, wenn möglich, zusammen.
$6\cdot (b-5)$
$ (-3a)\cdot(5a + 6b - 12) $
$ (x+5)(x+7) $
$ (6m+7n)(4m-n) $
Berichtige Maxs Ergebnisse auf der rechten Seite der Gleichung.
$ \left(4a+4\right)^2 = 16a^2 + 16a + 16 $
$\left(9x-8\right)^2 = 81x^2 - 126x + 64 $
$ 16y^2z^2 - 96xyz^2 + 144x^2z^2 = \left(4yz - 13xz\right)^2 $
Die Kinder Max und Angelika wollen ihre Zimmer tauschen. Angelikas altes Zimmer ist quadratisch. Maxs rechteckiges Zimmer ist im Vergleich zu dem quadratischen auf der einen Seite um $ 0,70\,\mathrm{m} $ verkürzt und auf der anderen Seite um $ 0,70\,\mathrm{m} $ verlängert. Sind die Zimmer gleich groß?
(Tipp: Stelle zuerst für jeden Flächeninhalt einen Term auf.)
Der Pausenhof des Bundestages soll neu gestaltet werden. Bisher ist eine quadratische Fläche $ x^2 $ mit Kies bedeckt. Die Rasenfläche erhält man, wenn man zur Kiesfläche an der einen Seite $ 2\,\mathrm{m} $ dazurechnet und an der anderen $ 4\,\mathrm{m} $ abzieht. Wie groß ist die Rasenfläche?
Zusatzaufgabe
Ein Bauer hat sein Kartoffelfeld vergrößert. Die neue Fläche beträgt: $ x^2 + 120x + 360 $. Um welche Länge (in m) hat der Bauer sein Feld auf jeder Seite erweitert?
Weitere Arbeitsblätter
Strahlensätze **
54 min, 6 Aufgaben #4182Drei Schenkel, verdrehte Skizzen, Erbsen und der Mond sowie Bergspitzen. Das Prinzip ist das Gleiche, aber die Schwierigkeit ist doch um einiges größer als sonst. Das nächste Level an Strahlensatzaufgaben sozusagen.
Wichtige Formeln im Gebäudeenergiegesetz
0 min, 4 Aufgaben #PQUVIn diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.
Kartenspiel Abitur GK Berlin 2016
46 min, 8 Aufgaben #1990Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Lernkontrolle Wahrscheinlichkeitsrechnung
36 min, 4 Aufgaben #7392Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.
Pythagoras - Anwendungen
49 min, 6 Aufgaben #0040Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.