Einleitung
Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs.
Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.
38 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Der Holzbestand eines Waldes beträgt anfangs $ 50\,000\,\mathrm{m^3} $. Nach 8 Jahren beläuft er sich auf $ 60\,000\,\mathrm{m^3} $. Berechne den jährlichen Zuwachs und gib ihn in Prozent an.
Max erhält monatlich 10€ Taschengeld.
Seine Eltern sind Weihnachten bereit, den Betrag im kommenden Jahr jeden Monat um je 1,50€ zu erhöhen.
Max schlägt dagegen eine monatliche Erhöhung von 10% vor.
Stelle für beide Methoden die Funktionsgleichungen auf und berechne, wieviel Taschengeld Max jeweils im Dezember des kommenden Jahres bekommen würde.
Um welche Art von Wachstum handelt es sich bei jedem Vorschlag?
Begründe deine Antwort.
Wie lange müsste Max warten, damit er nach seiner Methode 100€ pro Monat erhält?
Ein Anfangsbestand von 30 verfünffacht sich alle drei Tage.
Wie groß ist der Bestand nach 7 Tagen?
Es gibt verschiedene Schlafmittel, die zu einer besseren nächtlichen Schlafeinleitung führen sollen. Ihre Wirkung sollte jedoch spätestens zur nächsten Mathematikstunde weitgehend abgebaut sein.
Bei Einnahme eines Medikamentes nimmt der Körper 2 mg des Wirkstoffes Triazolam auf.
Messungen haben ergeben, dass die Wirkstoffkonzentration des Medikamentes im Blut exponentiell abnimmt und zwar stündlich um 25%.
Stelle die Zerfallsgleichung auf.
Ergänze folgende Tabelle.
t in Stunden | 0 | 1 | 2 | 5 | $ \,\,\, $10 |
Masse in mg | 2 |
Zeichne den Graphen der Funktion in ein Koordinatensystem ein.
Nach welcher Zeit hat sich die Wirkstoffkonzentration halbiert?
Wann ist die Wirkstoffkonzentration auf 1% abgesunken?
Der Graph einer Exponentialfunktion geht durch die folgenden Punkte P und Q mit $ \EPUNKT{P}{2}{3} $ und $ \EPUNKT{Q}{4}{5} $.
Berechne die zugehörige Funktionsgleichung.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Mathematische Kompetenzen - Zufall
15 min, 6 Aufgaben #0008Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.
Klassenarbeit Terme und Gleichungen
26 min, 5 Aufgaben #3750Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.
Wurzelterme vereinfachen ohne Taschenrechner
41 min, 13 Aufgaben #0990Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.
Quadratische Gleichungen
40 min, 5 Aufgaben #0060Die Aufgaben führen schrittweise an das Lösen von reinquadratischen Gleichungen verschiedener Formen heran.
Arbeit - quadratische Funktionen
39 min, 4 Aufgaben #0069Eine originale Arbeit mit 46 erreichbaren Punkten zum Thema quadratische Funktionen. Mit dabei: Linearfaktor, Satz von Vieta, Scheitelpunktsform, Optimierungsproblem und Imbiss Bronko.