Einleitung

Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs.
Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.

38 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

1

Der Holzbestand eines Waldes beträgt anfangs $ 50\,000\,\mathrm{m^3} $. Nach 8 Jahren beläuft er sich auf $ 60\,000\,\mathrm{m^3} $. Berechne den jährlichen Zuwachs und gib ihn in Prozent an.

2

Max erhält monatlich 10€ Taschengeld.
Seine Eltern sind Weihnachten bereit, den Betrag im kommenden Jahr jeden Monat um je 1,50€ zu erhöhen.
Max schlägt dagegen eine monatliche Erhöhung von 10% vor.

Stelle für beide Methoden die Funktionsgleichungen auf und berechne, wieviel Taschengeld Max jeweils im Dezember des kommenden Jahres bekommen würde.

Um welche Art von Wachstum handelt es sich bei jedem Vorschlag?

Begründe deine Antwort.

Wie lange müsste Max warten, damit er nach seiner Methode 100€ pro Monat erhält?

3

Ein Anfangsbestand von 30 verfünffacht sich alle drei Tage.

Wie groß ist der Bestand nach 7 Tagen?

4

Es gibt verschiedene Schlafmittel, die zu einer besseren nächtlichen Schlafeinleitung führen sollen. Ihre Wirkung sollte jedoch spätestens zur nächsten Mathematikstunde weitgehend abgebaut sein.

Bei Einnahme eines Medikamentes nimmt der Körper 2 mg des Wirkstoffes Triazolam auf.

Messungen haben ergeben, dass die Wirkstoffkonzentration des Medikamentes im Blut exponentiell abnimmt und zwar stündlich um 25%.

Stelle die Zerfallsgleichung auf.

Ergänze folgende Tabelle.

t in Stunden0125$ \,\,\, $10
Masse in mg2

Zeichne den Graphen der Funktion in ein Koordinatensystem ein.

Nach welcher Zeit hat sich die Wirkstoffkonzentration halbiert?

Wann ist die Wirkstoffkonzentration auf 1% abgesunken?

5

Der Graph einer Exponentialfunktion geht durch die folgenden Punkte P und Q mit $ \EPUNKT{P}{2}{3} $ und $ \EPUNKT{Q}{4}{5} $.

Berechne die zugehörige Funktionsgleichung.

PDF zum Drucken

Weitere Arbeitsblätter

Random Title

0 min, 0 Aufgaben #SEXY

test

Quadratische Gleichungen

74 min, 7 Aufgaben #0062

Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.

Quadratische Funktionen

53 min, 6 Aufgaben #0070

Eine Einführung in quadratische Funktionen. Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen. Ausblick könnte die quadratische Ergänzung sein.

Mathematische Kompetenzen - Zufall

15 min, 6 Aufgaben #0008

Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum