Einleitung
Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs.
Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.
38 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Der Holzbestand eines Waldes beträgt anfangs $ 50\,000\,\mathrm{m^3} $. Nach 8 Jahren beläuft er sich auf $ 60\,000\,\mathrm{m^3} $. Berechne den jährlichen Zuwachs und gib ihn in Prozent an.
Max erhält monatlich 10€ Taschengeld.
Seine Eltern sind Weihnachten bereit, den Betrag im kommenden Jahr jeden Monat um je 1,50€ zu erhöhen.
Max schlägt dagegen eine monatliche Erhöhung von 10% vor.
Stelle für beide Methoden die Funktionsgleichungen auf und berechne, wieviel Taschengeld Max jeweils im Dezember des kommenden Jahres bekommen würde.
Um welche Art von Wachstum handelt es sich bei jedem Vorschlag?
Begründe deine Antwort.
Wie lange müsste Max warten, damit er nach seiner Methode 100€ pro Monat erhält?
Ein Anfangsbestand von 30 verfünffacht sich alle drei Tage.
Wie groß ist der Bestand nach 7 Tagen?
Es gibt verschiedene Schlafmittel, die zu einer besseren nächtlichen Schlafeinleitung führen sollen. Ihre Wirkung sollte jedoch spätestens zur nächsten Mathematikstunde weitgehend abgebaut sein.
Bei Einnahme eines Medikamentes nimmt der Körper 2 mg des Wirkstoffes Triazolam auf.
Messungen haben ergeben, dass die Wirkstoffkonzentration des Medikamentes im Blut exponentiell abnimmt und zwar stündlich um 25%.
Stelle die Zerfallsgleichung auf.
Ergänze folgende Tabelle.
t in Stunden | 0 | 1 | 2 | 5 | $ \,\,\, $10 |
Masse in mg | 2 |
Zeichne den Graphen der Funktion in ein Koordinatensystem ein.
Nach welcher Zeit hat sich die Wirkstoffkonzentration halbiert?
Wann ist die Wirkstoffkonzentration auf 1% abgesunken?
Der Graph einer Exponentialfunktion geht durch die folgenden Punkte P und Q mit $ \EPUNKT{P}{2}{3} $ und $ \EPUNKT{Q}{4}{5} $.
Berechne die zugehörige Funktionsgleichung.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Einführung Terme
65 min, 8 Aufgaben #2826Erste Aufgaben zu Termen. Termwerte berechen, Terme vergleichen und Textgleichungen in beide Richtungen: sowohl Gleichungen aus Texten aufstellen aber auch Texte basierend auf Gleichungen verfassen. Die Hälfte der Aufgaben beschäftigt sich mit dem Zusammenfassen von Termen.
Mathematische Kompetenzen - Zufall
15 min, 6 Aufgaben #0008Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.
Kartenspiel Abitur GK Berlin 2016
46 min, 8 Aufgaben #1990Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Rechnen mit Brüchen
53 min, 13 Aufgaben #066013 mal 5 Aufgaben zum Addieren, Subtrahieren, Multiplizieren und Dividieren von Brüchen. Täglich etwas machen und 2 Wochen später ist man besser. :)
Weidezelt Abitur GK Berlin 2016
64 min, 6 Aufgaben #1611Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.