Einleitung
Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs.
Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.
38 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Der Holzbestand eines Waldes beträgt anfangs $ 50\,000\,\mathrm{m^3} $. Nach 8 Jahren beläuft er sich auf $ 60\,000\,\mathrm{m^3} $. Berechne den jährlichen Zuwachs und gib ihn in Prozent an.
Max erhält monatlich 10€ Taschengeld.
Seine Eltern sind Weihnachten bereit, den Betrag im kommenden Jahr jeden Monat um je 1,50€ zu erhöhen.
Max schlägt dagegen eine monatliche Erhöhung von 10% vor.
Stelle für beide Methoden die Funktionsgleichungen auf und berechne, wieviel Taschengeld Max jeweils im Dezember des kommenden Jahres bekommen würde.
Um welche Art von Wachstum handelt es sich bei jedem Vorschlag?
Begründe deine Antwort.
Wie lange müsste Max warten, damit er nach seiner Methode 100€ pro Monat erhält?
Ein Anfangsbestand von 30 verfünffacht sich alle drei Tage.
Wie groß ist der Bestand nach 7 Tagen?
Es gibt verschiedene Schlafmittel, die zu einer besseren nächtlichen Schlafeinleitung führen sollen. Ihre Wirkung sollte jedoch spätestens zur nächsten Mathematikstunde weitgehend abgebaut sein.
Bei Einnahme eines Medikamentes nimmt der Körper 2 mg des Wirkstoffes Triazolam auf.
Messungen haben ergeben, dass die Wirkstoffkonzentration des Medikamentes im Blut exponentiell abnimmt und zwar stündlich um 25%.
Stelle die Zerfallsgleichung auf.
Ergänze folgende Tabelle.
| t in Stunden | 0 | 1 | 2 | 5 | $ \,\,\, $10 |
| Masse in mg | 2 |
Zeichne den Graphen der Funktion in ein Koordinatensystem ein.
Nach welcher Zeit hat sich die Wirkstoffkonzentration halbiert?
Wann ist die Wirkstoffkonzentration auf 1% abgesunken?
Der Graph einer Exponentialfunktion geht durch die folgenden Punkte P und Q mit $ \EPUNKT{P}{2}{3} $ und $ \EPUNKT{Q}{4}{5} $.
Berechne die zugehörige Funktionsgleichung.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Kegel, Pyramide, Kugel
27 min, 5 Aufgaben #9540Die Formeln zur Oberflächen- und Volumenberechnung bei Kegeln, Pyramiden und Kugel kommen zur Anwendung. Es kommt dabei u.a. auch der Dreisatz sowie die Dichte-Formel zur Anwendung.
Wahrscheinlichkeiten
14 min, 2 Aufgaben #7390Zwei originale Aufgaben der mittleren Schulabschluss Prüfung (MSA) von 2012 und 2014 aus Berlin.
Test über Vorkenntnisse zu ganzrationalen Funktionen
31 min, 4 Aufgaben #1515Originaler Test mit 40 erreichbaren Punkten.
Textaufgaben mit mehreren Unbekannten
46 min, 11 Aufgaben #1336Elf Textaufgaben bei denen immer zunächst zwei Gleichungen mit zwei Unbekannten aufgestellt und dann gelöst werden müssen.
Kleine vermischte Übungen - Klasse 8
50 min, 12 Aufgaben #5200Bunt gemischte Textaufgaben zu verschiedenen Themen der 8. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.