Einleitung

Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs.
Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.

38 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

1

Der Holzbestand eines Waldes beträgt anfangs $ 50\,000\,\mathrm{m^3} $. Nach 8 Jahren beläuft er sich auf $ 60\,000\,\mathrm{m^3} $. Berechne den jährlichen Zuwachs und gib ihn in Prozent an.

2

Max erhält monatlich 10€ Taschengeld.
Seine Eltern sind Weihnachten bereit, den Betrag im kommenden Jahr jeden Monat um je 1,50€ zu erhöhen.
Max schlägt dagegen eine monatliche Erhöhung von 10% vor.

Stelle für beide Methoden die Funktionsgleichungen auf und berechne, wieviel Taschengeld Max jeweils im Dezember des kommenden Jahres bekommen würde.

Um welche Art von Wachstum handelt es sich bei jedem Vorschlag?

Begründe deine Antwort.

Wie lange müsste Max warten, damit er nach seiner Methode 100€ pro Monat erhält?

3

Ein Anfangsbestand von 30 verfünffacht sich alle drei Tage.

Wie groß ist der Bestand nach 7 Tagen?

4

Es gibt verschiedene Schlafmittel, die zu einer besseren nächtlichen Schlafeinleitung führen sollen. Ihre Wirkung sollte jedoch spätestens zur nächsten Mathematikstunde weitgehend abgebaut sein.

Bei Einnahme eines Medikamentes nimmt der Körper 2 mg des Wirkstoffes Triazolam auf.

Messungen haben ergeben, dass die Wirkstoffkonzentration des Medikamentes im Blut exponentiell abnimmt und zwar stündlich um 25%.

Stelle die Zerfallsgleichung auf.

Ergänze folgende Tabelle.

t in Stunden0125$ \,\,\, $10
Masse in mg2

Zeichne den Graphen der Funktion in ein Koordinatensystem ein.

Nach welcher Zeit hat sich die Wirkstoffkonzentration halbiert?

Wann ist die Wirkstoffkonzentration auf 1% abgesunken?

5

Der Graph einer Exponentialfunktion geht durch die folgenden Punkte P und Q mit $ \EPUNKT{P}{2}{3} $ und $ \EPUNKT{Q}{4}{5} $.

Berechne die zugehörige Funktionsgleichung.

PDF zum Drucken

Weitere Arbeitsblätter

Vermischte Übungen MSA

36 min, 6 Aufgaben #1290

Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.

Bernoulli-Ketten

43 min, 4 Aufgaben #1700

Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.

Flächensätze - Vorwissen I

31 min, 7 Aufgaben #0037

Verschiedene grundlegende Aufgaben zu Flächensätze. Der Umgang mit dem für das Thema wichtigen Gleichungen, Flächen- und Winkelberechnungen, sowie erste einfache Aufgaben mit dem Satz des Pythagoras kommen dran.

Stammfunktionen und Flächeninhalte

76 min, 8 Aufgaben #8010

Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)

Lineare Gleichungen

58 min, 5 Aufgaben #3738

Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer. Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum