Einleitung

Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel).
Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.

69 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Konstantenregel: $ f(x) = e^x + a \Rightarrow f'(x) = e^x $

$ f(x) = e^x + 3 $

$ f(x) = e^x - 6^3 $

$ f(x) = e^x + \sqrt{\frac{e^2}{2}} $

2

Faktorregel: $ f(x) = a\cdot e^x \Rightarrow f'(x) = a\cdot e^x $

$ f(x) = 4e^x $

$ f(x) = e^3 e^x $

$ f(x) = \sqrt{\frac{e^2}{-0,5}} e^x $

3

Beliebige Basis: $ f(x) = a^x \Rightarrow f'(x) = \ln(a)\cdot a^x $

$ f(x) = 4^x $

$ f(x) = 0,4^x $

$ f(x) = (4^{-1})^x $

4

Produktregel: $ f(x) = u(x)\cdot e^x \Rightarrow f'(x) = u'(x)\cdot e^x + u(x)\cdot e^x $

$ f(x) = xe^x $

$ f(x) = \frac{2}{x} e^x $

$ f(x) = \left(\frac{2}{x} + \frac{2}{\sqrt{x}}\right)e^x $

5

Kettenregel: $ f(x) = e^{u(x)} \Rightarrow f'(x) = u'(x) \cdot e^{u(x)} $

$ f(x) = e^{2x} $

$ f(x) = e^{x^2} $

$ f(x) = e^{\sqrt{x}} $

6

Bilden Sie jeweils die 1. Ableitung durch die Kombination mehrerer Regeln.

$ f(x) = x e^x - 6e^{2x}$

$ f(x) = x^2 e^x - 6e^{\sqrt{x}} $

$ f(x) = \frac{3}{e^x} - e^{\sqrt{x + x^2}} $

$ f(x) = \frac{e^{\sqrt{x^2 - \frac{4}{x}}}}{(x-2)^2} $

7

Kurvendiskussion

Gegeben sei die Funktion $ f(x) = 3e^x\cdot (e^x - 1) $.

Stellen Sie das Verhalten im Unendlichen fest.

Ermitteln Sie die Nullstellen, Extrem- und Wendepunkte.

Skizzieren Sie die Funktion für ein geeignetes Intervall.

An welcher Stelle hat die Funktion die Steigung 1,5?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis


Weitere Arbeitsblätter

Klassenarbeit Terme und Gleichungen

26 min, 5 Aufgaben #3750

Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.

Übungsaufgaben zur Stochastik

30 min, 6 Aufgaben #1654

Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.

Hypothesentests - Signifikanztests

68 min, 5 Aufgaben #1740

Aufgaben bei denen Nullhypothesen aufgestellt und mit Entscheidungsregeln angenommen oder verworfen werden. Es kommen einseitige und zweiseitige Signifikanztests vor.

Kartenspiel Abitur GK Berlin 2016

46 min, 8 Aufgaben #1990

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Klammern auflösen

56 min, 9 Aufgaben #3337

Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum