Einleitung

Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel).
Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.

69 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Konstantenregel: $ f(x) = e^x + a \Rightarrow f'(x) = e^x $

$ f(x) = e^x + 3 $

$ f(x) = e^x - 6^3 $

$ f(x) = e^x + \sqrt{\frac{e^2}{2}} $

2

Faktorregel: $ f(x) = a\cdot e^x \Rightarrow f'(x) = a\cdot e^x $

$ f(x) = 4e^x $

$ f(x) = e^3 e^x $

$ f(x) = \sqrt{\frac{e^2}{-0,5}} e^x $

3

Beliebige Basis: $ f(x) = a^x \Rightarrow f'(x) = \ln(a)\cdot a^x $

$ f(x) = 4^x $

$ f(x) = 0,4^x $

$ f(x) = (4^{-1})^x $

4

Produktregel: $ f(x) = u(x)\cdot e^x \Rightarrow f'(x) = u'(x)\cdot e^x + u(x)\cdot e^x $

$ f(x) = xe^x $

$ f(x) = \frac{2}{x} e^x $

$ f(x) = \left(\frac{2}{x} + \frac{2}{\sqrt{x}}\right)e^x $

5

Kettenregel: $ f(x) = e^{u(x)} \Rightarrow f'(x) = u'(x) \cdot e^{u(x)} $

$ f(x) = e^{2x} $

$ f(x) = e^{x^2} $

$ f(x) = e^{\sqrt{x}} $

6

Bilden Sie jeweils die 1. Ableitung durch die Kombination mehrerer Regeln.

$ f(x) = x e^x - 6e^{2x}$

$ f(x) = x^2 e^x - 6e^{\sqrt{x}} $

$ f(x) = \frac{3}{e^x} - e^{\sqrt{x + x^2}} $

$ f(x) = \frac{e^{\sqrt{x^2 - \frac{4}{x}}}}{(x-2)^2} $

7

Kurvendiskussion

Gegeben sei die Funktion $ f(x) = 3e^x\cdot (e^x - 1) $.

Stellen Sie das Verhalten im Unendlichen fest.

Ermitteln Sie die Nullstellen, Extrem- und Wendepunkte.

Skizzieren Sie die Funktion für ein geeignetes Intervall.

An welcher Stelle hat die Funktion die Steigung 1,5?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis


Weitere Arbeitsblätter

Extremwertaufgaben

72 min, 7 Aufgaben #1599

Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

Prozentrechnung - Grundlagen

81 min, 5 Aufgaben #0100

Hier geht es um pures Rechnen. Zunächst wird der Zusammenhang von Prozenten und Brüchen geübt und im Anschluss die drei grundlegenden Aufgabentypen der Prozentrechnung.

Wahrscheinlichkeiten

14 min, 2 Aufgaben #7390

Zwei originale Aufgaben der mittleren Schulabschluss Prüfung (MSA) von 2012 und 2014 aus Berlin.

Test über Vorkenntnisse zu ganzrationalen Funktionen

31 min, 4 Aufgaben #1515

Originaler Test mit 40 erreichbaren Punkten.

Abzählverfahren

54 min, 7 Aufgaben #1650

Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum