Einleitung

Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel).
Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.

69 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Konstantenregel: $ f(x) = e^x + a \Rightarrow f'(x) = e^x $

$ f(x) = e^x + 3 $

$ f(x) = e^x - 6^3 $

$ f(x) = e^x + \sqrt{\frac{e^2}{2}} $

2

Faktorregel: $ f(x) = a\cdot e^x \Rightarrow f'(x) = a\cdot e^x $

$ f(x) = 4e^x $

$ f(x) = e^3 e^x $

$ f(x) = \sqrt{\frac{e^2}{-0,5}} e^x $

3

Beliebige Basis: $ f(x) = a^x \Rightarrow f'(x) = \ln(a)\cdot a^x $

$ f(x) = 4^x $

$ f(x) = 0,4^x $

$ f(x) = (4^{-1})^x $

4

Produktregel: $ f(x) = u(x)\cdot e^x \Rightarrow f'(x) = u'(x)\cdot e^x + u(x)\cdot e^x $

$ f(x) = xe^x $

$ f(x) = \frac{2}{x} e^x $

$ f(x) = \left(\frac{2}{x} + \frac{2}{\sqrt{x}}\right)e^x $

5

Kettenregel: $ f(x) = e^{u(x)} \Rightarrow f'(x) = u'(x) \cdot e^{u(x)} $

$ f(x) = e^{2x} $

$ f(x) = e^{x^2} $

$ f(x) = e^{\sqrt{x}} $

6

Bilden Sie jeweils die 1. Ableitung durch die Kombination mehrerer Regeln.

$ f(x) = x e^x - 6e^{2x}$

$ f(x) = x^2 e^x - 6e^{\sqrt{x}} $

$ f(x) = \frac{3}{e^x} - e^{\sqrt{x + x^2}} $

$ f(x) = \frac{e^{\sqrt{x^2 - \frac{4}{x}}}}{(x-2)^2} $

7

Kurvendiskussion

Gegeben sei die Funktion $ f(x) = 3e^x\cdot (e^x - 1) $.

Stellen Sie das Verhalten im Unendlichen fest.

Ermitteln Sie die Nullstellen, Extrem- und Wendepunkte.

Skizzieren Sie die Funktion für ein geeignetes Intervall.

An welcher Stelle hat die Funktion die Steigung 1,5?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis


Weitere Arbeitsblätter

Integration 101

61 min, 10 Aufgaben #BDEGH

Aufgaben von leicht nach schwerer zum Üben.

Klassenarbeit binomische Formeln

33 min, 8 Aufgaben #3132

Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.

Anwendungsaufgaben Dreiecksmessung

59 min, 5 Aufgaben #7020

Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.

Prozentrechnung - Grundlagen

81 min, 5 Aufgaben #0100

Hier geht es um pures Rechnen. Zunächst wird der Zusammenhang von Prozenten und Brüchen geübt und im Anschluss die drei grundlegenden Aufgabentypen der Prozentrechnung.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum