Einleitung

Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel).
Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.

69 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Konstantenregel: $ f(x) = e^x + a \Rightarrow f'(x) = e^x $

$ f(x) = e^x + 3 $

$ f(x) = e^x - 6^3 $

$ f(x) = e^x + \sqrt{\frac{e^2}{2}} $

2

Faktorregel: $ f(x) = a\cdot e^x \Rightarrow f'(x) = a\cdot e^x $

$ f(x) = 4e^x $

$ f(x) = e^3 e^x $

$ f(x) = \sqrt{\frac{e^2}{-0,5}} e^x $

3

Beliebige Basis: $ f(x) = a^x \Rightarrow f'(x) = \ln(a)\cdot a^x $

$ f(x) = 4^x $

$ f(x) = 0,4^x $

$ f(x) = (4^{-1})^x $

4

Produktregel: $ f(x) = u(x)\cdot e^x \Rightarrow f'(x) = u'(x)\cdot e^x + u(x)\cdot e^x $

$ f(x) = xe^x $

$ f(x) = \frac{2}{x} e^x $

$ f(x) = \left(\frac{2}{x} + \frac{2}{\sqrt{x}}\right)e^x $

5

Kettenregel: $ f(x) = e^{u(x)} \Rightarrow f'(x) = u'(x) \cdot e^{u(x)} $

$ f(x) = e^{2x} $

$ f(x) = e^{x^2} $

$ f(x) = e^{\sqrt{x}} $

6

Bilden Sie jeweils die 1. Ableitung durch die Kombination mehrerer Regeln.

$ f(x) = x e^x - 6e^{2x}$

$ f(x) = x^2 e^x - 6e^{\sqrt{x}} $

$ f(x) = \frac{3}{e^x} - e^{\sqrt{x + x^2}} $

$ f(x) = \frac{e^{\sqrt{x^2 - \frac{4}{x}}}}{(x-2)^2} $

7

Kurvendiskussion

Gegeben sei die Funktion $ f(x) = 3e^x\cdot (e^x - 1) $.

Stellen Sie das Verhalten im Unendlichen fest.

Ermitteln Sie die Nullstellen, Extrem- und Wendepunkte.

Skizzieren Sie die Funktion für ein geeignetes Intervall.

An welcher Stelle hat die Funktion die Steigung 1,5?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis


Weitere Arbeitsblätter

Terme und Gleichungen in Texten

57 min, 10 Aufgaben #1300

Das Arbeitsblatt besteht aus 3 Teilen. Aufgestellt werden müssen Terme (1), einfache Gleichungen (2), schwierige Gleichungen (3).

Medikament Abitur GK Berlin 2016

53 min, 7 Aufgaben #1610

Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016.

Gauß Verfahren

84 min, 7 Aufgaben #1777

Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.

Klassenarbeit - Rechnen mit Wurzeln

27 min, 9 Aufgaben #0993

Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.

Arbeit - ganzrationale Funktionen

49 min, 3 Aufgaben #1520

Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum