Einleitung
Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel).
Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.
69 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Konstantenregel: $ f(x) = e^x + a \Rightarrow f'(x) = e^x $
$ f(x) = e^x + 3 $
$ f(x) = e^x - 6^3 $
$ f(x) = e^x + \sqrt{\frac{e^2}{2}} $
Faktorregel: $ f(x) = a\cdot e^x \Rightarrow f'(x) = a\cdot e^x $
$ f(x) = 4e^x $
$ f(x) = e^3 e^x $
$ f(x) = \sqrt{\frac{e^2}{-0,5}} e^x $
Beliebige Basis: $ f(x) = a^x \Rightarrow f'(x) = \ln(a)\cdot a^x $
$ f(x) = 4^x $
$ f(x) = 0,4^x $
$ f(x) = (4^{-1})^x $
Produktregel: $ f(x) = u(x)\cdot e^x \Rightarrow f'(x) = u'(x)\cdot e^x + u(x)\cdot e^x $
$ f(x) = xe^x $
$ f(x) = \frac{2}{x} e^x $
$ f(x) = \left(\frac{2}{x} + \frac{2}{\sqrt{x}}\right)e^x $
Kettenregel: $ f(x) = e^{u(x)} \Rightarrow f'(x) = u'(x) \cdot e^{u(x)} $
$ f(x) = e^{2x} $
$ f(x) = e^{x^2} $
$ f(x) = e^{\sqrt{x}} $
Bilden Sie jeweils die 1. Ableitung durch die Kombination mehrerer Regeln.
$ f(x) = x e^x - 6e^{2x}$
$ f(x) = x^2 e^x - 6e^{\sqrt{x}} $
$ f(x) = \frac{3}{e^x} - e^{\sqrt{x + x^2}} $
$ f(x) = \frac{e^{\sqrt{x^2 - \frac{4}{x}}}}{(x-2)^2} $
Kurvendiskussion
Gegeben sei die Funktion $ f(x) = 3e^x\cdot (e^x - 1) $.
Stellen Sie das Verhalten im Unendlichen fest.
Ermitteln Sie die Nullstellen, Extrem- und Wendepunkte.
Skizzieren Sie die Funktion für ein geeignetes Intervall.
An welcher Stelle hat die Funktion die Steigung 1,5?
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Berechnungen an Körpern
62 min, 6 Aufgaben #9598Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.
Klassenarbeit binomische Formeln
33 min, 8 Aufgaben #3132Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.
Terme vereinfachen
35 min, 4 Aufgaben #2832Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division. Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.
Dezimalbrüche
85 min, 7 Aufgaben #1010In verschiedenen Aufgaben werden gebrochene Zahlen zwischen Dezimalzahlen und echten Brüchen hin und her umgewandelt.
Hemden mit Mängeln Abitur LK Berlin 2011
32 min, 6 Aufgaben #1720Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.