Einleitung

Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel).
Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.

69 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Konstantenregel: $ f(x) = e^x + a \Rightarrow f'(x) = e^x $

$ f(x) = e^x + 3 $

$ f(x) = e^x - 6^3 $

$ f(x) = e^x + \sqrt{\frac{e^2}{2}} $

2

Faktorregel: $ f(x) = a\cdot e^x \Rightarrow f'(x) = a\cdot e^x $

$ f(x) = 4e^x $

$ f(x) = e^3 e^x $

$ f(x) = \sqrt{\frac{e^2}{-0,5}} e^x $

3

Beliebige Basis: $ f(x) = a^x \Rightarrow f'(x) = \ln(a)\cdot a^x $

$ f(x) = 4^x $

$ f(x) = 0,4^x $

$ f(x) = (4^{-1})^x $

4

Produktregel: $ f(x) = u(x)\cdot e^x \Rightarrow f'(x) = u'(x)\cdot e^x + u(x)\cdot e^x $

$ f(x) = xe^x $

$ f(x) = \frac{2}{x} e^x $

$ f(x) = \left(\frac{2}{x} + \frac{2}{\sqrt{x}}\right)e^x $

5

Kettenregel: $ f(x) = e^{u(x)} \Rightarrow f'(x) = u'(x) \cdot e^{u(x)} $

$ f(x) = e^{2x} $

$ f(x) = e^{x^2} $

$ f(x) = e^{\sqrt{x}} $

6

Bilden Sie jeweils die 1. Ableitung durch die Kombination mehrerer Regeln.

$ f(x) = x e^x - 6e^{2x}$

$ f(x) = x^2 e^x - 6e^{\sqrt{x}} $

$ f(x) = \frac{3}{e^x} - e^{\sqrt{x + x^2}} $

$ f(x) = \frac{e^{\sqrt{x^2 - \frac{4}{x}}}}{(x-2)^2} $

7

Kurvendiskussion

Gegeben sei die Funktion $ f(x) = 3e^x\cdot (e^x - 1) $.

Stellen Sie das Verhalten im Unendlichen fest.

Ermitteln Sie die Nullstellen, Extrem- und Wendepunkte.

Skizzieren Sie die Funktion für ein geeignetes Intervall.

An welcher Stelle hat die Funktion die Steigung 1,5?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis


Weitere Arbeitsblätter

Kreise - Anwendung

59 min, 5 Aufgaben #8890

In verschiedenen Anwendungsaufgaben müssen die Kreisformeln genutzt werden. Umstellen der Formeln, Kreisausschnitte, Prozent- und Geschwindigkeitsrechnung müssen darüber hinaus angewendet werden.

Aus 3 mach 4 - Abitur GK Berlin 2008

23 min, 5 Aufgaben #1987

Original Abiturprüfung aus Berlin für den Grundkurs mit einem Glücksspielautomat. Mit dabei war die Kombinatorik, stochastische Unabhängigkeit, Bernoulli-Ketten, mindestens-mindestens Aufgabe und ein Hypothesentest.

Ableitungsfunktion und ihre Anwendung

92 min, 12 Aufgaben #1590

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

Teilweises Wurzelziehen - Rationalmachen des Nenners

52 min, 11 Aufgaben #0992

Aufgaben zum teilweisen, auch partiellen, Wurzelziehen mit Zahlen, Variablen und Faktorisieren. Einfache Aufgaben zum Rationalmachen des Nenners.

Extremwertaufgaben

80 min, 8 Aufgaben #1597

Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum