Einleitung
Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016.
53 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Nach der Einnahme eines Medikaments geht der Wirkstoff des Medikaments in das Blut über, wobei sich die Konzentration des Wirkstoffs im Blut mit der Zeit verändert.
Die Konzentration wird für $ 0 \le t \le 6 $ durch die Funktion $ f(t) = \frac{1}{4}t^3 - 3t^2 + 9t $ beschrieben (Graph siehe Anlage). Dabei ist $ t $ die Zeit in Stunden seit Beginn der Einnahme und $ f(t) $ die Konzentration in $ \mu $g pro Liter.
Geben Sie anhand des Graphen die Zeitintervalle an, in denen die Konzentration des Wirkstoffs im Blut zunimmt und in denen sie abnimmt.
Das Medikament ist nur wirksam, wenn die Konzentration des Wirkstoffs im Blut mindestens 3,7\,$ \mu $g pro Liter beträgt.
Geben Sie ein Zeitintervall an, in dem das Medikament wirksam ist.
Berechnen Sie die Nullstellen von $ f $.
Geben Sie anhand des dargestellten Graphen die Koordinaten des Hochpunktes an.
Weisen Sie rechnerisch nach, dass die Konzentration des Wirkstoffs nach 6 Stunden ein Minimum erreicht.
Bestimmen Sie für den Zeitpunkt $ t = 4 $ die momentane Änderungsrate der Konzentration des Wirkstoffs im Blut.
Berechnen Sie den Zeitpunkt, in dem die Konzentration des Wirkstoffs im Blut am stärksten abnimmt.
Ein Pharmakonzern hat ein anderes Medikament entwickelt, bei dem die Konzentration des Wirkstoffs im Blut im Intervall $ \left[0;5\right] $ durch die Funktion $ k(t) = at^3 + bt^2 + 5t $ bestimmt werden kann.
Bekannt ist, dass bei der vorgesehenen Einnahme die Konzentration nach 5 Stunden wieder den Wert null erreicht und sich die Konzentration bei $ t = 5 $ nicht ändert, d.h. die Änderungsrate auf null sinkt.
Ermitteln Sie aus diesen Angaben die Parameter der Funktion $ k $.
( Zur Kontrolle: $ a = 0,2 $; $ b = -2 $.)
Die Änderungsraten der beiden Konzentrationen lassen sich anhand der Ableitungsfunktionen $ f' $ bzw. $ k' $ beschreiben.
Untersuchen Sie, ob es im Intervall $ [0;5] $ einen Zeitpunkt gibt, in dem die Änderungsraten der beiden Konzentrationen gleich sind.
Zeichnen Sie den Graphen der Funktion $ k $ in das gegebene Koordinatensystem.
Beschreiben Sie anhand der Graphen von $ f $ und $ k $ drei Unterschiede in der zeitlichen Entwicklung der Konzentration der Medikamente.
Der Pharmakonzern behauptet: Vom Medikament $ f $ wird etwa doppelt so viel Wirkstoff aufgenommen wie vom Medikament $ k $.
Erläutern Sie, wie diese Behauptung überprüft werden könnte.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Mathematische Kompetenzen - Zufall
15 min, 6 Aufgaben #0008Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.
Klammern auflösen
35 min, 8 Aufgaben #3336Das Vereinfachen von Termen mit Klammern wird Stück für Stück gezeigt. Mit dabei sind Minusklammern, das einfache und das doppelte Distributivgesetz. Nach den Aufgaben ist man fachlich soweit sich als nächstes an die binomischen Formeln vagen zu können.
Diagnosetest konstruieren und argumentieren
36 min, 5 Aufgaben #4025Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.
Textgleichungen mit Brüchen für Profis 1v3
39 min, 8 Aufgaben #1341Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.
Kathetensatz und Höhensatz
37 min, 6 Aufgaben #0045Eine Hälfte beschäftigt sich mit Berechnungen am rechtwinkligen Dreieck. Die andere Hälfte sind schwierigere Textaufgaben.