Einleitung
Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016.
53 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Nach der Einnahme eines Medikaments geht der Wirkstoff des Medikaments in das Blut über, wobei sich die Konzentration des Wirkstoffs im Blut mit der Zeit verändert.
Die Konzentration wird für $ 0 \le t \le 6 $ durch die Funktion $ f(t) = \frac{1}{4}t^3 - 3t^2 + 9t $ beschrieben (Graph siehe Anlage). Dabei ist $ t $ die Zeit in Stunden seit Beginn der Einnahme und $ f(t) $ die Konzentration in $ \mu $g pro Liter.
Geben Sie anhand des Graphen die Zeitintervalle an, in denen die Konzentration des Wirkstoffs im Blut zunimmt und in denen sie abnimmt.
Das Medikament ist nur wirksam, wenn die Konzentration des Wirkstoffs im Blut mindestens 3,7\,$ \mu $g pro Liter beträgt.
Geben Sie ein Zeitintervall an, in dem das Medikament wirksam ist.
Berechnen Sie die Nullstellen von $ f $.
Geben Sie anhand des dargestellten Graphen die Koordinaten des Hochpunktes an.
Weisen Sie rechnerisch nach, dass die Konzentration des Wirkstoffs nach 6 Stunden ein Minimum erreicht.
Bestimmen Sie für den Zeitpunkt $ t = 4 $ die momentane Änderungsrate der Konzentration des Wirkstoffs im Blut.
Berechnen Sie den Zeitpunkt, in dem die Konzentration des Wirkstoffs im Blut am stärksten abnimmt.
Ein Pharmakonzern hat ein anderes Medikament entwickelt, bei dem die Konzentration des Wirkstoffs im Blut im Intervall $ \left[0;5\right] $ durch die Funktion $ k(t) = at^3 + bt^2 + 5t $ bestimmt werden kann.
Bekannt ist, dass bei der vorgesehenen Einnahme die Konzentration nach 5 Stunden wieder den Wert null erreicht und sich die Konzentration bei $ t = 5 $ nicht ändert, d.h. die Änderungsrate auf null sinkt.
Ermitteln Sie aus diesen Angaben die Parameter der Funktion $ k $.
( Zur Kontrolle: $ a = 0,2 $; $ b = -2 $.)
Die Änderungsraten der beiden Konzentrationen lassen sich anhand der Ableitungsfunktionen $ f' $ bzw. $ k' $ beschreiben.
Untersuchen Sie, ob es im Intervall $ [0;5] $ einen Zeitpunkt gibt, in dem die Änderungsraten der beiden Konzentrationen gleich sind.
Zeichnen Sie den Graphen der Funktion $ k $ in das gegebene Koordinatensystem.
Beschreiben Sie anhand der Graphen von $ f $ und $ k $ drei Unterschiede in der zeitlichen Entwicklung der Konzentration der Medikamente.
Der Pharmakonzern behauptet: Vom Medikament $ f $ wird etwa doppelt so viel Wirkstoff aufgenommen wie vom Medikament $ k $.
Erläutern Sie, wie diese Behauptung überprüft werden könnte.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Anwendungsaufgaben Körper
13 min, 4 Aufgaben #9599Zusammengesetzte Aufgaben mit Zylindern, Kegeln und Kugeln bezüglich Volumen und Oberflächen. Kombiniert sind die Aufgaben mit Prozentrechnung, Dreisatz und Dichte.
Abzählverfahren
35 min, 6 Aufgaben #1651Verschiedene Aufgaben mit Würfel-Würfen und Zahlen mit ihren Ziffern. Gefragt ist jedes mal nach der Wahrscheinlichkeit, dass ein bestimmtes Ereignis passiert. Schwierigkeit liegt darin herauszufinden, was die Anzahl aller Ergebnisse und die Anzahl der günstigen Ergebnisse ist.
Gauß Verfahren
84 min, 7 Aufgaben #1777Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.
Klassenarbeit - Wurzelgesetze und Potenzgesetze
24 min, 6 Aufgaben #0995Originale Arbeit mit 36 erreichbaren Punkten.
Binomische Formeln
89 min, 11 Aufgaben #3120Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.