Einleitung
Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016.
53 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Nach der Einnahme eines Medikaments geht der Wirkstoff des Medikaments in das Blut über, wobei sich die Konzentration des Wirkstoffs im Blut mit der Zeit verändert.
Die Konzentration wird für $ 0 \le t \le 6 $ durch die Funktion $ f(t) = \frac{1}{4}t^3 - 3t^2 + 9t $ beschrieben (Graph siehe Anlage). Dabei ist $ t $ die Zeit in Stunden seit Beginn der Einnahme und $ f(t) $ die Konzentration in $ \mu $g pro Liter.
Geben Sie anhand des Graphen die Zeitintervalle an, in denen die Konzentration des Wirkstoffs im Blut zunimmt und in denen sie abnimmt.
Das Medikament ist nur wirksam, wenn die Konzentration des Wirkstoffs im Blut mindestens 3,7\,$ \mu $g pro Liter beträgt.
Geben Sie ein Zeitintervall an, in dem das Medikament wirksam ist.
Berechnen Sie die Nullstellen von $ f $.
Geben Sie anhand des dargestellten Graphen die Koordinaten des Hochpunktes an.
Weisen Sie rechnerisch nach, dass die Konzentration des Wirkstoffs nach 6 Stunden ein Minimum erreicht.
Bestimmen Sie für den Zeitpunkt $ t = 4 $ die momentane Änderungsrate der Konzentration des Wirkstoffs im Blut.
Berechnen Sie den Zeitpunkt, in dem die Konzentration des Wirkstoffs im Blut am stärksten abnimmt.
Ein Pharmakonzern hat ein anderes Medikament entwickelt, bei dem die Konzentration des Wirkstoffs im Blut im Intervall $ \left[0;5\right] $ durch die Funktion $ k(t) = at^3 + bt^2 + 5t $ bestimmt werden kann.
Bekannt ist, dass bei der vorgesehenen Einnahme die Konzentration nach 5 Stunden wieder den Wert null erreicht und sich die Konzentration bei $ t = 5 $ nicht ändert, d.h. die Änderungsrate auf null sinkt.
Ermitteln Sie aus diesen Angaben die Parameter der Funktion $ k $.
( Zur Kontrolle: $ a = 0,2 $; $ b = -2 $.)
Die Änderungsraten der beiden Konzentrationen lassen sich anhand der Ableitungsfunktionen $ f' $ bzw. $ k' $ beschreiben.
Untersuchen Sie, ob es im Intervall $ [0;5] $ einen Zeitpunkt gibt, in dem die Änderungsraten der beiden Konzentrationen gleich sind.
Zeichnen Sie den Graphen der Funktion $ k $ in das gegebene Koordinatensystem.
Beschreiben Sie anhand der Graphen von $ f $ und $ k $ drei Unterschiede in der zeitlichen Entwicklung der Konzentration der Medikamente.
Der Pharmakonzern behauptet: Vom Medikament $ f $ wird etwa doppelt so viel Wirkstoff aufgenommen wie vom Medikament $ k $.
Erläutern Sie, wie diese Behauptung überprüft werden könnte.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Ableitungsfunktion und ihre Anwendung
92 min, 12 Aufgaben #1590Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.
Terme und Gleichungen in Texten
57 min, 10 Aufgaben #1300Das Arbeitsblatt besteht aus 3 Teilen. Aufgestellt werden müssen Terme (1), einfache Gleichungen (2), schwierige Gleichungen (3).
Klassenarbeit binomische Formeln
33 min, 8 Aufgaben #3132Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.
Kleine vermischte Übungen - Klasse 10
39 min, 13 Aufgaben #7400Bunt gemischte Textaufgaben zu verschiedenen Themen der 10. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.
Klammern auflösen
56 min, 9 Aufgaben #3337Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.