Einleitung
Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016.
53 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Nach der Einnahme eines Medikaments geht der Wirkstoff des Medikaments in das Blut über, wobei sich die Konzentration des Wirkstoffs im Blut mit der Zeit verändert.
Die Konzentration wird für $ 0 \le t \le 6 $ durch die Funktion $ f(t) = \frac{1}{4}t^3 - 3t^2 + 9t $ beschrieben (Graph siehe Anlage). Dabei ist $ t $ die Zeit in Stunden seit Beginn der Einnahme und $ f(t) $ die Konzentration in $ \mu $g pro Liter.
Geben Sie anhand des Graphen die Zeitintervalle an, in denen die Konzentration des Wirkstoffs im Blut zunimmt und in denen sie abnimmt.
Das Medikament ist nur wirksam, wenn die Konzentration des Wirkstoffs im Blut mindestens 3,7\,$ \mu $g pro Liter beträgt.
Geben Sie ein Zeitintervall an, in dem das Medikament wirksam ist.
Berechnen Sie die Nullstellen von $ f $.
Geben Sie anhand des dargestellten Graphen die Koordinaten des Hochpunktes an.
Weisen Sie rechnerisch nach, dass die Konzentration des Wirkstoffs nach 6 Stunden ein Minimum erreicht.
Bestimmen Sie für den Zeitpunkt $ t = 4 $ die momentane Änderungsrate der Konzentration des Wirkstoffs im Blut.
Berechnen Sie den Zeitpunkt, in dem die Konzentration des Wirkstoffs im Blut am stärksten abnimmt.
Ein Pharmakonzern hat ein anderes Medikament entwickelt, bei dem die Konzentration des Wirkstoffs im Blut im Intervall $ \left[0;5\right] $ durch die Funktion $ k(t) = at^3 + bt^2 + 5t $ bestimmt werden kann.
Bekannt ist, dass bei der vorgesehenen Einnahme die Konzentration nach 5 Stunden wieder den Wert null erreicht und sich die Konzentration bei $ t = 5 $ nicht ändert, d.h. die Änderungsrate auf null sinkt.
Ermitteln Sie aus diesen Angaben die Parameter der Funktion $ k $.
( Zur Kontrolle: $ a = 0,2 $; $ b = -2 $.)
Die Änderungsraten der beiden Konzentrationen lassen sich anhand der Ableitungsfunktionen $ f' $ bzw. $ k' $ beschreiben.
Untersuchen Sie, ob es im Intervall $ [0;5] $ einen Zeitpunkt gibt, in dem die Änderungsraten der beiden Konzentrationen gleich sind.
Zeichnen Sie den Graphen der Funktion $ k $ in das gegebene Koordinatensystem.
Beschreiben Sie anhand der Graphen von $ f $ und $ k $ drei Unterschiede in der zeitlichen Entwicklung der Konzentration der Medikamente.
Der Pharmakonzern behauptet: Vom Medikament $ f $ wird etwa doppelt so viel Wirkstoff aufgenommen wie vom Medikament $ k $.
Erläutern Sie, wie diese Behauptung überprüft werden könnte.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Polynomdivision und mittlere Änderungsrate
35 min, 6 Aufgaben #1551Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
Klausur Differentialrechnung
42 min, 5 Aufgaben #1565Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.
Rechnen mit Brüchen
53 min, 13 Aufgaben #066013 mal 5 Aufgaben zum Addieren, Subtrahieren, Multiplizieren und Dividieren von Brüchen. Täglich etwas machen und 2 Wochen später ist man besser. :)
Klammern auflösen
51 min, 5 Aufgaben #3335Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz). Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.
Stammfunktionen und Flächeninhalte
76 min, 8 Aufgaben #8010Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)