Einleitung

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

44 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

Smartphones sind mit unterschiedlichen Betriebssystemen ausgestattet.

In Deutschland nutzen von den Smartphone-Besitzern

70 % das Betriebssystem A,

20 % das Betriebssystem B,

10 % andere Betriebssysteme.


Im Folgenden werden entsprechend die Bezeichnungen A-Phone und B-Phone verwendet.

In einer Straßenbahn sitzen 20 Personen.
Jede dieser Personen besitzt genau ein Smartphone.

Genau 12 von ihnen besitzen ein A-Phone.

Weniger als 2 von ihnen besitzen ein B-Phone.

Jede der 20 Personen besitzt entweder ein A-Phone oder ein B-Phone.

1

Berechnen Sie die Wahrscheinlichkeiten der folgenden Ereignisse:

Genau 12 von ihnen besitzen ein A-Phone.

Weniger als 2 von ihnen besitzen ein B-Phone.

Jede der 20 Personen besitzt entweder ein A-Phone oder ein B-Phone.

2

Tatsächlich sitzen in der Straßenbahn genau 14 Personen, die ein A-Phone besitzen.

Vier der 20 Personen steigen aus.

Bestimmen Sie die Wahrscheinlichkeit der folgenden Ereignisse.

Die ersten beiden Aussteigenden besitzen ein A-Phone, der dritte nicht.

Der erste Aussteigende besitzt ein A-Phone und von den anderen 3 noch genau einer.

Von den 16 Personen, die in der Straßenbahn geblieben sind, besitzen genau 11 ein A-Phone.

In einem Kursprojekt sollen Schülerinnen und Schüler die Verbreitung unterschiedlicher Betriebssysteme in Deutschland untersuchen. Sie befragen Personen nach der Art des Betriebssystems, welches Sie in ihrem Smartphone nutzen.

3

Berechnen Sie, wie viele Personen mindestens befragt werden müssen, um mit einer Wahrscheinlichkeit von mindestens 95 % mindestens einen B-Phone-Nutzer zu finden.

4

An einer Haltestelle warten $ n $ Personen, die alle ein Smartphone besitzen.

Ein Schüler behauptet, dass die Wahrscheinlichkeit dafür, dass alle Wartenden ein A- oder B-Phone nutzen, mindestens 50 % beträgt.

Untersuchen Sie, für welche Anzahlen $ n $ diese Behauptung zutrifft.

PDF zum Drucken

Weitere Arbeitsblätter

Extremwertaufgaben

72 min, 7 Aufgaben #1599

Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

Lichtkunst Abitur GK Hamburg

61 min, 6 Aufgaben #1945

Abituraufgabe aus der zentralen schriftlichen Abiturprüfung 2005 im Fach Mathematik aus Hamburg für den Grundkurs mit insgesamt 100 erreichbaren Punkten.

Lineare Funktionen

54 min, 6 Aufgaben #3800

Dieses Arbeitsblatt führt an lineare Funktionen heran. Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.

Rechnen mit Dezimalbrüchen

58 min, 10 Aufgaben #0670

Viele Aufgaben zu den vier Hauptrechenarten mit Dezimalbrüchen. Schriftlich muss Plus, Minus, Mal und Durch benutzt werden.

Klammern auflösen

56 min, 9 Aufgaben #3337

Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum