Einleitung

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

44 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

Smartphones sind mit unterschiedlichen Betriebssystemen ausgestattet.

In Deutschland nutzen von den Smartphone-Besitzern

70 % das Betriebssystem A,

20 % das Betriebssystem B,

10 % andere Betriebssysteme.


Im Folgenden werden entsprechend die Bezeichnungen A-Phone und B-Phone verwendet.

In einer Straßenbahn sitzen 20 Personen.
Jede dieser Personen besitzt genau ein Smartphone.

Genau 12 von ihnen besitzen ein A-Phone.

Weniger als 2 von ihnen besitzen ein B-Phone.

Jede der 20 Personen besitzt entweder ein A-Phone oder ein B-Phone.

1

Berechnen Sie die Wahrscheinlichkeiten der folgenden Ereignisse:

Genau 12 von ihnen besitzen ein A-Phone.

Weniger als 2 von ihnen besitzen ein B-Phone.

Jede der 20 Personen besitzt entweder ein A-Phone oder ein B-Phone.

2

Tatsächlich sitzen in der Straßenbahn genau 14 Personen, die ein A-Phone besitzen.

Vier der 20 Personen steigen aus.

Bestimmen Sie die Wahrscheinlichkeit der folgenden Ereignisse.

Die ersten beiden Aussteigenden besitzen ein A-Phone, der dritte nicht.

Der erste Aussteigende besitzt ein A-Phone und von den anderen 3 noch genau einer.

Von den 16 Personen, die in der Straßenbahn geblieben sind, besitzen genau 11 ein A-Phone.

In einem Kursprojekt sollen Schülerinnen und Schüler die Verbreitung unterschiedlicher Betriebssysteme in Deutschland untersuchen. Sie befragen Personen nach der Art des Betriebssystems, welches Sie in ihrem Smartphone nutzen.

3

Berechnen Sie, wie viele Personen mindestens befragt werden müssen, um mit einer Wahrscheinlichkeit von mindestens 95 % mindestens einen B-Phone-Nutzer zu finden.

4

An einer Haltestelle warten $ n $ Personen, die alle ein Smartphone besitzen.

Ein Schüler behauptet, dass die Wahrscheinlichkeit dafür, dass alle Wartenden ein A- oder B-Phone nutzen, mindestens 50 % beträgt.

Untersuchen Sie, für welche Anzahlen $ n $ diese Behauptung zutrifft.

PDF zum Drucken

Weitere Arbeitsblätter

Diagnosetest konstruieren und argumentieren

36 min, 5 Aufgaben #4025

Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.

Flächensätze - Vorwissen I

31 min, 7 Aufgaben #0037

Verschiedene grundlegende Aufgaben zu Flächensätze. Der Umgang mit dem für das Thema wichtigen Gleichungen, Flächen- und Winkelberechnungen, sowie erste einfache Aufgaben mit dem Satz des Pythagoras kommen dran.

Klausur Differentialrechnung

42 min, 5 Aufgaben #1565

Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.

Extremwertaufgaben

80 min, 8 Aufgaben #1597

Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

Lern­kontrolle Wahr­scheinlich­keits­rechnung

36 min, 4 Aufgaben #7392

Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum