Einleitung
Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
44 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Smartphones sind mit unterschiedlichen Betriebssystemen ausgestattet.
In Deutschland nutzen von den Smartphone-Besitzern
70 % das Betriebssystem A,
20 % das Betriebssystem B,
10 % andere Betriebssysteme.
Im Folgenden werden entsprechend die Bezeichnungen A-Phone und B-Phone verwendet.
In einer Straßenbahn sitzen 20 Personen.
Jede dieser Personen besitzt genau ein Smartphone.
Genau 12 von ihnen besitzen ein A-Phone.
Weniger als 2 von ihnen besitzen ein B-Phone.
Jede der 20 Personen besitzt entweder ein A-Phone oder ein B-Phone.
Berechnen Sie die Wahrscheinlichkeiten der folgenden Ereignisse:
Genau 12 von ihnen besitzen ein A-Phone.
Weniger als 2 von ihnen besitzen ein B-Phone.
Jede der 20 Personen besitzt entweder ein A-Phone oder ein B-Phone.
Tatsächlich sitzen in der Straßenbahn genau 14 Personen, die ein A-Phone besitzen.
Vier der 20 Personen steigen aus.
Bestimmen Sie die Wahrscheinlichkeit der folgenden Ereignisse.
Die ersten beiden Aussteigenden besitzen ein A-Phone, der dritte nicht.
Der erste Aussteigende besitzt ein A-Phone und von den anderen 3 noch genau einer.
Von den 16 Personen, die in der Straßenbahn geblieben sind, besitzen genau 11 ein A-Phone.
In einem Kursprojekt sollen Schülerinnen und Schüler die Verbreitung unterschiedlicher Betriebssysteme in Deutschland untersuchen. Sie befragen Personen nach der Art des Betriebssystems, welches Sie in ihrem Smartphone nutzen.
Berechnen Sie, wie viele Personen mindestens befragt werden müssen, um mit einer Wahrscheinlichkeit von mindestens 95 % mindestens einen B-Phone-Nutzer zu finden.
An einer Haltestelle warten $ n $ Personen, die alle ein Smartphone besitzen.
Ein Schüler behauptet, dass die Wahrscheinlichkeit dafür, dass alle Wartenden ein A- oder B-Phone nutzen, mindestens 50 % beträgt.
Untersuchen Sie, für welche Anzahlen $ n $ diese Behauptung zutrifft.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Kepler und Gravitation
81 min, 8 Aufgaben #6030Zwei Massen ziehen sich, je nach ihrer Entfernung voneinander, an. Eine Formel um auszurechnen wie stark gibt es natürlich auch. Damit einhergehend gibt es Aufgaben, die gelöst werden können. Zum Beispiel Geschwindigkeiten von Raketen und Satelliten oder die Masse der Sonne.
Test über Vorkenntnisse zu ganzrationalen Funktionen
31 min, 4 Aufgaben #1515Originaler Test mit 40 erreichbaren Punkten.
Kreise - Anwendung
59 min, 5 Aufgaben #8890In verschiedenen Anwendungsaufgaben müssen die Kreisformeln genutzt werden. Umstellen der Formeln, Kreisausschnitte, Prozent- und Geschwindigkeitsrechnung müssen darüber hinaus angewendet werden.
Kleine vermischte Übungen - Klasse 8
50 min, 12 Aufgaben #5200Bunt gemischte Textaufgaben zu verschiedenen Themen der 8. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.
Studienkolleg Vektoren, SS 2017
126 min, 10 Aufgaben #1818Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.