Einleitung
Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.
126 Minuten Erklärungen in 10 Aufgaben von Koonys Schule.
Aufgaben
Im nebenstehenden Bild sind zwei Repräsentanten der Vektoren $ \vec{a} $ und $ \vec{b} $ dargestellt.
Berechnen Sie das Skalarprodukt
aus den Längen von $ \vec{a} $ und $ \vec{b} $ und dem Winkel $ \varphi = \angle(\vec{a},\vec{b}) $.
aus den Koordinaten von $ \vec{a} $ und $ \vec{b} $.

Ein Parallelogramm hat die Eckpunkte $ \RPUNKT{A}{1}{3}{6} $, $ \RPUNKT{B}{3}{7}{3} $, $ \RPUNKT{C}{8}{7}{5} $ und D.
Bestimmen Sie die Koordinaten von D und den Schnittpunkt der Diagonalen.
Berechnen Sie die Innenwinkel des Parallelogramms, sowie den Winkel, unter dem sich die Diagonalen schneiden.
Berechnen Sie den Flächeninhalt des Parallelogramms.
Untersuchen Sie, ob die Punkte $ \RPUNKT{G}{\frac{13}{4}}{5}{5} $ und $ \RPUNKT{H}{4}{-1}{5} $ innerhalb des Parallelogramms liegen.
Ein Viereck hat die Eckpunkte $ \RPUNKT{A}{2}{0}{3} $, $ \RPUNKT{B}{4}{4}{4} $, $ \RPUNKT{C}{11}{7}{9} $ und $ \RPUNKT{D}{9}{3}{8} $.
Untersuchen Sie, ob das Viereck ABCD ein Parallelogramm ist.
Zwei Vektoren $ \vec{a} $ und $ \vec{b} $ haben die Koordinaten $ \vec{a} = \RVEKTOR{c}{3}{1}{2} $ und $ \vec{b} = \RVEKTOR{c}{-1}{2}{1} $.
Berechnen Sie
das Vektorprodukt $ \vec{a}\times\vec{b} $.
das Skalarprodukt $ \vec{a}\cdot\vec{b} $.
Die Punkte $ \RPUNKT{A}{8}{4}{0} $, $ \RPUNKT{B}{0}{6}{2} $, $ \RPUNKT{C}{0}{0}{8} $ und $ \RPUNKT{D}{8}{-1}{5} $ sind Eckpunkte eines Vierecks.
Stellen Sie das Viereck in einem räumlichen Koordinatensystem dar.
Weisen Sie nach, dass das Dreieck ABC rechtwinklig und gleichschenklig ist.
Berechnen Sie die Größe des Flächeninhalts des Vierecks ABCD.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Gartenhaus Abitur GK Berlin 2016
62 min, 6 Aufgaben #1981Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Textgleichungen mit Brüchen für Profis 3v3
56 min, 8 Aufgaben #1343Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.
Berechnungen an Körpern
62 min, 6 Aufgaben #9598Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.