Einleitung

Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.

127 Minuten Erklärungen in 10 Aufgaben von Koonys Schule.

Aufgaben

1

Im nebenstehenden Bild sind zwei Repräsentanten der Vektoren $ \vec{a} $ und $ \vec{b} $ dargestellt.

Berechnen Sie das Skalarprodukt

aus den Längen von $ \vec{a} $ und $ \vec{b} $ und dem Winkel $ \varphi = \angle(\vec{a},\vec{b}) $.

aus den Koordinaten von $ \vec{a} $ und $ \vec{b} $.

Ein Bild aus der Koonys Schule Aufgabe 004e7.

3

Ein Parallelogramm hat die Eckpunkte $ \RPUNKT{A}{1}{3}{6} $, $ \RPUNKT{B}{3}{7}{3} $, $ \RPUNKT{C}{8}{7}{5} $ und D.

Bestimmen Sie die Koordinaten von D und den Schnittpunkt der Diagonalen.

Berechnen Sie die Innenwinkel des Parallelogramms, sowie den Winkel, unter dem sich die Diagonalen schneiden.

Berechnen Sie den Flächeninhalt des Parallelogramms.

Untersuchen Sie, ob die Punkte $ \RPUNKT{G}{\frac{13}{4}}{5}{5} $ und $ \RPUNKT{H}{4}{-1}{5} $ innerhalb des Parallelogramms liegen.

4

Welche Punkte der $ x $-Achse haben von $ \RPUNKT{P}{-6}{3}{4} $ den Abstand $ d = 13 $ ?

5

Ein Viereck hat die Eckpunkte $ \RPUNKT{A}{2}{0}{3} $, $ \RPUNKT{B}{4}{4}{4} $, $ \RPUNKT{C}{11}{7}{9} $ und $ \RPUNKT{D}{9}{3}{8} $.

Untersuchen Sie, ob das Viereck ABCD ein Parallelogramm ist.

6

Zwei Vektoren $ \vec{a} $ und $ \vec{b} $ haben die Koordinaten $ \vec{a} = \RVEKTOR{c}{3}{1}{2} $ und $ \vec{b} = \RVEKTOR{c}{-1}{2}{1} $.

Berechnen Sie

das Vektorprodukt $ \vec{a}\times\vec{b} $.

das Skalarprodukt $ \vec{a}\cdot\vec{b} $.

7

Die Punkte $ \RPUNKT{A}{8}{4}{0} $, $ \RPUNKT{B}{0}{6}{2} $, $ \RPUNKT{C}{0}{0}{8} $ und $ \RPUNKT{D}{8}{-1}{5} $ sind Eckpunkte eines Vierecks.

Stellen Sie das Viereck in einem räumlichen Koordinatensystem dar.

Weisen Sie nach, dass das Dreieck ABC rechtwinklig und gleichschenklig ist.

Berechnen Sie die Größe des Flächeninhalts des Vierecks ABCD.

PDF zum Drucken

Weitere Arbeitsblätter

Lern­kontrolle Wahr­scheinlich­keits­rechnung

36 min, 4 Aufgaben #7392

Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.

Abzählverfahren

54 min, 7 Aufgaben #1650

Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.

Teilweises Wurzelziehen - Rationalmachen des Nenners

52 min, 11 Aufgaben #0992

Aufgaben zum teilweisen, auch partiellen, Wurzelziehen mit Zahlen, Variablen und Faktorisieren. Einfache Aufgaben zum Rationalmachen des Nenners.

IT Vorschau-Demnächst

0 min, 4 Aufgaben #7778

Cooles Blatt.

random title

0 min, 0 Aufgaben #GKVW

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum