Einleitung

Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.

127 Minuten Erklärungen in 10 Aufgaben von Koonys Schule.

Aufgaben

1

Im nebenstehenden Bild sind zwei Repräsentanten der Vektoren $ \vec{a} $ und $ \vec{b} $ dargestellt.

Berechnen Sie das Skalarprodukt

aus den Längen von $ \vec{a} $ und $ \vec{b} $ und dem Winkel $ \varphi = \angle(\vec{a},\vec{b}) $.

aus den Koordinaten von $ \vec{a} $ und $ \vec{b} $.

Ein Bild aus der Koonys Schule Aufgabe 004e7.

3

Ein Parallelogramm hat die Eckpunkte $ \RPUNKT{A}{1}{3}{6} $, $ \RPUNKT{B}{3}{7}{3} $, $ \RPUNKT{C}{8}{7}{5} $ und D.

Bestimmen Sie die Koordinaten von D und den Schnittpunkt der Diagonalen.

Berechnen Sie die Innenwinkel des Parallelogramms, sowie den Winkel, unter dem sich die Diagonalen schneiden.

Berechnen Sie den Flächeninhalt des Parallelogramms.

Untersuchen Sie, ob die Punkte $ \RPUNKT{G}{\frac{13}{4}}{5}{5} $ und $ \RPUNKT{H}{4}{-1}{5} $ innerhalb des Parallelogramms liegen.

4

Welche Punkte der $ x $-Achse haben von $ \RPUNKT{P}{-6}{3}{4} $ den Abstand $ d = 13 $ ?

5

Ein Viereck hat die Eckpunkte $ \RPUNKT{A}{2}{0}{3} $, $ \RPUNKT{B}{4}{4}{4} $, $ \RPUNKT{C}{11}{7}{9} $ und $ \RPUNKT{D}{9}{3}{8} $.

Untersuchen Sie, ob das Viereck ABCD ein Parallelogramm ist.

6

Zwei Vektoren $ \vec{a} $ und $ \vec{b} $ haben die Koordinaten $ \vec{a} = \RVEKTOR{c}{3}{1}{2} $ und $ \vec{b} = \RVEKTOR{c}{-1}{2}{1} $.

Berechnen Sie

das Vektorprodukt $ \vec{a}\times\vec{b} $.

das Skalarprodukt $ \vec{a}\cdot\vec{b} $.

7

Die Punkte $ \RPUNKT{A}{8}{4}{0} $, $ \RPUNKT{B}{0}{6}{2} $, $ \RPUNKT{C}{0}{0}{8} $ und $ \RPUNKT{D}{8}{-1}{5} $ sind Eckpunkte eines Vierecks.

Stellen Sie das Viereck in einem räumlichen Koordinatensystem dar.

Weisen Sie nach, dass das Dreieck ABC rechtwinklig und gleichschenklig ist.

Berechnen Sie die Größe des Flächeninhalts des Vierecks ABCD.

PDF zum Drucken

Weitere Arbeitsblätter

Sinus - Kosinus - Tangens

41 min, 6 Aufgaben #7000

Sinus, Kosinus und Tangens von leicht bis schwer. Zunächst Aufgaben mit den Gleichungen und all ihren Varianten. Danach Standard-Aufgaben an rechtwinkligen Dreiecken und die zweite Hälfte sind Textaufgaben bei denen das gleiche noch einmal drankommt mit dem gewissen Etwas, das anspruchsvolle Aufgaben ausmacht.

Weidezelt Abitur GK Berlin 2016

64 min, 6 Aufgaben #1611

Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.

Übungen zur Differenzialrechnung

98 min, 8 Aufgaben #1560

Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.

Berechnungen an Körpern

62 min, 6 Aufgaben #9598

Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.

Textgleichungen mit Brüchen für Profis 3v3

56 min, 8 Aufgaben #1343

Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum