Einleitung

Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.

127 Minuten Erklärungen in 10 Aufgaben von Koonys Schule.

Aufgaben

1

Im nebenstehenden Bild sind zwei Repräsentanten der Vektoren $ \vec{a} $ und $ \vec{b} $ dargestellt.

Berechnen Sie das Skalarprodukt

aus den Längen von $ \vec{a} $ und $ \vec{b} $ und dem Winkel $ \varphi = \angle(\vec{a},\vec{b}) $.

aus den Koordinaten von $ \vec{a} $ und $ \vec{b} $.

Ein Bild aus der Koonys Schule Aufgabe 004e7.

3

Ein Parallelogramm hat die Eckpunkte $ \RPUNKT{A}{1}{3}{6} $, $ \RPUNKT{B}{3}{7}{3} $, $ \RPUNKT{C}{8}{7}{5} $ und D.

Bestimmen Sie die Koordinaten von D und den Schnittpunkt der Diagonalen.

Berechnen Sie die Innenwinkel des Parallelogramms, sowie den Winkel, unter dem sich die Diagonalen schneiden.

Berechnen Sie den Flächeninhalt des Parallelogramms.

Untersuchen Sie, ob die Punkte $ \RPUNKT{G}{\frac{13}{4}}{5}{5} $ und $ \RPUNKT{H}{4}{-1}{5} $ innerhalb des Parallelogramms liegen.

4

Welche Punkte der $ x $-Achse haben von $ \RPUNKT{P}{-6}{3}{4} $ den Abstand $ d = 13 $ ?

5

Ein Viereck hat die Eckpunkte $ \RPUNKT{A}{2}{0}{3} $, $ \RPUNKT{B}{4}{4}{4} $, $ \RPUNKT{C}{11}{7}{9} $ und $ \RPUNKT{D}{9}{3}{8} $.

Untersuchen Sie, ob das Viereck ABCD ein Parallelogramm ist.

6

Zwei Vektoren $ \vec{a} $ und $ \vec{b} $ haben die Koordinaten $ \vec{a} = \RVEKTOR{c}{3}{1}{2} $ und $ \vec{b} = \RVEKTOR{c}{-1}{2}{1} $.

Berechnen Sie

das Vektorprodukt $ \vec{a}\times\vec{b} $.

das Skalarprodukt $ \vec{a}\cdot\vec{b} $.

7

Die Punkte $ \RPUNKT{A}{8}{4}{0} $, $ \RPUNKT{B}{0}{6}{2} $, $ \RPUNKT{C}{0}{0}{8} $ und $ \RPUNKT{D}{8}{-1}{5} $ sind Eckpunkte eines Vierecks.

Stellen Sie das Viereck in einem räumlichen Koordinatensystem dar.

Weisen Sie nach, dass das Dreieck ABC rechtwinklig und gleichschenklig ist.

Berechnen Sie die Größe des Flächeninhalts des Vierecks ABCD.

PDF zum Drucken

Weitere Arbeitsblätter

Anwendungsaufgaben radioaktiver Zerfall

58 min, 5 Aufgaben #6543

Textaufgaben über Stoffe, die exponentiell Zerfallen. Wertetabellen, Prozente und Halbwertszeiten kommen unter anderem vor. Es sind im Wesentlichen verschiedene Aufgaben zu Exponentialfunktionen deren Wachstumsfaktor kleiner als 1 ist.

Lernkontrolle Potenzen

39 min, 8 Aufgaben #0994

Verschiedene Aufgaben zu Zehnerpotenzen. Zwei Textaufgaben inklusive. Bei den zwei letzten Aufgaben müssen mit Hilfe von Potenzgesetzen Terme vereinfacht werden.

Wichtige Formeln im Gebäudeenergiegesetz

0 min, 4 Aufgaben #PQUV

In diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.

Übungen zur Differenzialrechnung

98 min, 8 Aufgaben #1560

Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.

Rechnen mit Brüchen

53 min, 13 Aufgaben #0660

13 mal 5 Aufgaben zum Addieren, Subtrahieren, Multiplizieren und Dividieren von Brüchen. Täglich etwas machen und 2 Wochen später ist man besser. :)

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum