Einleitung
Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.
126 Minuten Erklärungen in 10 Aufgaben von Koonys Schule.
Aufgaben
Im nebenstehenden Bild sind zwei Repräsentanten der Vektoren $ \vec{a} $ und $ \vec{b} $ dargestellt.
Berechnen Sie das Skalarprodukt
aus den Längen von $ \vec{a} $ und $ \vec{b} $ und dem Winkel $ \varphi = \angle(\vec{a},\vec{b}) $.
aus den Koordinaten von $ \vec{a} $ und $ \vec{b} $.
Ein Parallelogramm hat die Eckpunkte $ \RPUNKT{A}{1}{3}{6} $, $ \RPUNKT{B}{3}{7}{3} $, $ \RPUNKT{C}{8}{7}{5} $ und D.
Bestimmen Sie die Koordinaten von D und den Schnittpunkt der Diagonalen.
Berechnen Sie die Innenwinkel des Parallelogramms, sowie den Winkel, unter dem sich die Diagonalen schneiden.
Berechnen Sie den Flächeninhalt des Parallelogramms.
Untersuchen Sie, ob die Punkte $ \RPUNKT{G}{\frac{13}{4}}{5}{5} $ und $ \RPUNKT{H}{4}{-1}{5} $ innerhalb des Parallelogramms liegen.
Ein Viereck hat die Eckpunkte $ \RPUNKT{A}{2}{0}{3} $, $ \RPUNKT{B}{4}{4}{4} $, $ \RPUNKT{C}{11}{7}{9} $ und $ \RPUNKT{D}{9}{3}{8} $.
Untersuchen Sie, ob das Viereck ABCD ein Parallelogramm ist.
Zwei Vektoren $ \vec{a} $ und $ \vec{b} $ haben die Koordinaten $ \vec{a} = \RVEKTOR{c}{3}{1}{2} $ und $ \vec{b} = \RVEKTOR{c}{-1}{2}{1} $.
Berechnen Sie
das Vektorprodukt $ \vec{a}\times\vec{b} $.
das Skalarprodukt $ \vec{a}\cdot\vec{b} $.
Die Punkte $ \RPUNKT{A}{8}{4}{0} $, $ \RPUNKT{B}{0}{6}{2} $, $ \RPUNKT{C}{0}{0}{8} $ und $ \RPUNKT{D}{8}{-1}{5} $ sind Eckpunkte eines Vierecks.
Stellen Sie das Viereck in einem räumlichen Koordinatensystem dar.
Weisen Sie nach, dass das Dreieck ABC rechtwinklig und gleichschenklig ist.
Berechnen Sie die Größe des Flächeninhalts des Vierecks ABCD.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Ebenen - Übungsaufgaben
52 min, 6 Aufgaben #1933Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.
Extremwertaufgaben
72 min, 7 Aufgaben #1599Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
Rechnen mit Dezimalbrüchen
58 min, 10 Aufgaben #0670Viele Aufgaben zu den vier Hauptrechenarten mit Dezimalbrüchen. Schriftlich muss Plus, Minus, Mal und Durch benutzt werden.
Hemden mit Mängeln Abitur LK Berlin 2011
32 min, 6 Aufgaben #1720Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.