Einleitung
Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.
127 Minuten Erklärungen in 10 Aufgaben von Koonys Schule.
Aufgaben
Im nebenstehenden Bild sind zwei Repräsentanten der Vektoren $ \vec{a} $ und $ \vec{b} $ dargestellt.
Berechnen Sie das Skalarprodukt
aus den Längen von $ \vec{a} $ und $ \vec{b} $ und dem Winkel $ \varphi = \angle(\vec{a},\vec{b}) $.
aus den Koordinaten von $ \vec{a} $ und $ \vec{b} $.

Ein Parallelogramm hat die Eckpunkte $ \RPUNKT{A}{1}{3}{6} $, $ \RPUNKT{B}{3}{7}{3} $, $ \RPUNKT{C}{8}{7}{5} $ und D.
Bestimmen Sie die Koordinaten von D und den Schnittpunkt der Diagonalen.
Berechnen Sie die Innenwinkel des Parallelogramms, sowie den Winkel, unter dem sich die Diagonalen schneiden.
Berechnen Sie den Flächeninhalt des Parallelogramms.
Untersuchen Sie, ob die Punkte $ \RPUNKT{G}{\frac{13}{4}}{5}{5} $ und $ \RPUNKT{H}{4}{-1}{5} $ innerhalb des Parallelogramms liegen.
Ein Viereck hat die Eckpunkte $ \RPUNKT{A}{2}{0}{3} $, $ \RPUNKT{B}{4}{4}{4} $, $ \RPUNKT{C}{11}{7}{9} $ und $ \RPUNKT{D}{9}{3}{8} $.
Untersuchen Sie, ob das Viereck ABCD ein Parallelogramm ist.
Zwei Vektoren $ \vec{a} $ und $ \vec{b} $ haben die Koordinaten $ \vec{a} = \RVEKTOR{c}{3}{1}{2} $ und $ \vec{b} = \RVEKTOR{c}{-1}{2}{1} $.
Berechnen Sie
das Vektorprodukt $ \vec{a}\times\vec{b} $.
das Skalarprodukt $ \vec{a}\cdot\vec{b} $.
Die Punkte $ \RPUNKT{A}{8}{4}{0} $, $ \RPUNKT{B}{0}{6}{2} $, $ \RPUNKT{C}{0}{0}{8} $ und $ \RPUNKT{D}{8}{-1}{5} $ sind Eckpunkte eines Vierecks.
Stellen Sie das Viereck in einem räumlichen Koordinatensystem dar.
Weisen Sie nach, dass das Dreieck ABC rechtwinklig und gleichschenklig ist.
Berechnen Sie die Größe des Flächeninhalts des Vierecks ABCD.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Übungsaufgaben zur Wahrscheinlichkeitsrechnung
29 min, 4 Aufgaben #1656Gewinnerwartung und Wahrscheinlichkeiten bei einem bzw. zwei Würfeln. Die Aufgaben beschäftigen sich hauptsächlich mit Baumdiagrammen und damit, aus dem Text herauszufinden was genau man zählen muss.
Übungsaufgaben zur Stochastik
30 min, 6 Aufgaben #1654Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.
Klassenarbeit Terme und Gleichungen
26 min, 5 Aufgaben #3750Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.
Prozentrechnung - Grundlagen
81 min, 5 Aufgaben #0100Hier geht es um pures Rechnen. Zunächst wird der Zusammenhang von Prozenten und Brüchen geübt und im Anschluss die drei grundlegenden Aufgabentypen der Prozentrechnung.
Wochenübung - besondere quadratische Gleichungen
89 min, 6 Aufgaben #0065Für sechs Tage gibt es täglich 4 Aufgaben. Eine Bruchgleichung, eine biquadratische Gleichung, eine Gleichung 3. Grades ohne Absolutglied und eine zum Knobeln.