Einleitung

Zwei Massen ziehen sich, je nach ihrer Entfernung voneinander, an. Eine Formel um auszurechnen wie stark gibt es natürlich auch.
Damit einhergehend gibt es Aufgaben, die gelöst werden können. Zum Beispiel Geschwindigkeiten von Raketen und Satelliten oder die Masse der Sonne.

81 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Welche Geschwindigkeit muss eine Rakete besitzen, die die Erde in einer Höhe von $ 2000\,\mathrm{km} $ zur Erdoberfläche umkreist?

2

Eine Person besitzt eine Masse von $ 75\,\mathrm{kg} $. Der Erdradius beträgt $ 6370\,\mathrm{km} $, die Erdbeschleunigung wird an der Erdoberfläche mit $ 9,81\,\mathrm{\frac{m}{s^2}} $ bestimmt. Bestimmen Sie daraus mit Hilfe des Gravitationsgesetzes die Masse der Erde.

3

Stellen Sie anschaulich dar, was im 3. Keplerschen Gesetz die Proportionalität
$ T^2 \sim a^3 $ bedeutet.

4

Die Umlaufdauer der Erde um die Sonne beträgt 1 Jahr = 365,25 d. Der Erdabstand $ r $ ist 1 AE = 150 Mill. km. Bestimmen Sie daraus die Sonnenmasse $ M $ und geben Sie das Verhältnis Sonnenmasse $ M $ zur Erdmasse $ m $ an.

5

In welcher Entfernung vom Erdmittelpunkt wird ein zwischen Erde und Mond befindlicher Gegenstand schwerelos?

6

Auf einer Umlaufbahn um die Erde bewegen sich hintereinander zwei Raumschiffe. Das hinten fliegende Raumschiff soll für ein Kopplungsmanöver das vordere Raumschiff einholen. Es hat zwei Triebwerke, eins in Flugrichtung und eins entgegen der Flugrichtung. Welches muss gezündet werden, um das vordere Raumschiff einzuholen?

Das Triebwerk in Flugrichtung.

Mit diesen beiden Triebwerken allein ist es nicht möglich.

Das Triebwerk entgegen der Flugrichtung.

7

In welchem Abstand zur Erdoberfläche müsste ein Satellit die Erde am Äquator umkreisen, wenn er über einem Punkt der Erdoberfläche stillzustehen scheint? Welche Bahngeschwindigkeit besitzt der auf dieser Bahn?

8

In welchem Abstand zur Sonne müsste ein Himmelskörper diese umkreisen, wenn seine Umlaufdauer $ 2,0 $ Jahre betragen würde?

PDF zum Drucken

Weitere Arbeitsblätter

Mathematische Kompetenzen - Zufall

15 min, 6 Aufgaben #0008

Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.

Gleichungen in Texten

54 min, 11 Aufgaben #1337

Zwei Gleichungen aufstellen und dann lösen. Immer. Zum Teil sehr knifflig!

Klassenarbeit binomische Formeln

33 min, 8 Aufgaben #3132

Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.

Abzählverfahren

35 min, 6 Aufgaben #1651

Verschiedene Aufgaben mit Würfel-Würfen und Zahlen mit ihren Ziffern. Gefragt ist jedes mal nach der Wahrscheinlichkeit, dass ein bestimmtes Ereignis passiert. Schwierigkeit liegt darin herauszufinden, was die Anzahl aller Ergebnisse und die Anzahl der günstigen Ergebnisse ist.

Felder und Kreise - GK Klausur Physik

40 min, 3 Aufgaben #6123

Originale Physik Klausur für einen Grundkurs im 2. Semester aus Berlin. 39 Punkte, 90min

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum