Einleitung
Zwei Massen ziehen sich, je nach ihrer Entfernung voneinander, an. Eine Formel um auszurechnen wie stark gibt es natürlich auch.
Damit einhergehend gibt es Aufgaben, die gelöst werden können. Zum Beispiel Geschwindigkeiten von Raketen und Satelliten oder die Masse der Sonne.
81 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.
Aufgaben
Welche Geschwindigkeit muss eine Rakete besitzen, die die Erde in einer Höhe von $ 2000\,\mathrm{km} $ zur Erdoberfläche umkreist?
Eine Person besitzt eine Masse von $ 75\,\mathrm{kg} $. Der Erdradius beträgt $ 6370\,\mathrm{km} $, die Erdbeschleunigung wird an der Erdoberfläche mit $ 9,81\,\mathrm{\frac{m}{s^2}} $ bestimmt. Bestimmen Sie daraus mit Hilfe des Gravitationsgesetzes die Masse der Erde.
Stellen Sie anschaulich dar, was im 3. Keplerschen Gesetz die Proportionalität
$ T^2 \sim a^3 $ bedeutet.
Die Umlaufdauer der Erde um die Sonne beträgt 1 Jahr = 365,25 d. Der Erdabstand $ r $ ist 1 AE = 150 Mill. km. Bestimmen Sie daraus die Sonnenmasse $ M $ und geben Sie das Verhältnis Sonnenmasse $ M $ zur Erdmasse $ m $ an.
In welcher Entfernung vom Erdmittelpunkt wird ein zwischen Erde und Mond befindlicher Gegenstand schwerelos?
Auf einer Umlaufbahn um die Erde bewegen sich hintereinander zwei Raumschiffe. Das hinten fliegende Raumschiff soll für ein Kopplungsmanöver das vordere Raumschiff einholen. Es hat zwei Triebwerke, eins in Flugrichtung und eins entgegen der Flugrichtung. Welches muss gezündet werden, um das vordere Raumschiff einzuholen?
Das Triebwerk in Flugrichtung.
Mit diesen beiden Triebwerken allein ist es nicht möglich.
Das Triebwerk entgegen der Flugrichtung.
In welchem Abstand zur Erdoberfläche müsste ein Satellit die Erde am Äquator umkreisen, wenn er über einem Punkt der Erdoberfläche stillzustehen scheint? Welche Bahngeschwindigkeit besitzt der auf dieser Bahn?
In welchem Abstand zur Sonne müsste ein Himmelskörper diese umkreisen, wenn seine Umlaufdauer $ 2,0 $ Jahre betragen würde?
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Gleichungen in Texten
54 min, 11 Aufgaben #1337Zwei Gleichungen aufstellen und dann lösen. Immer. Zum Teil sehr knifflig!
Übungsaufgaben Wahrscheinlichkeitsrechnung
39 min, 5 Aufgaben #1652Übungsaufgaben mit Baumdiagrammen und Abzählverfahren. Mit dabei sind das Werfen von zwei Würfeln, Urnen mit Kugeln (mit bzw. ohne zurücklegen), Kombinatorik im Modehaus und Rosinenbrötchen.
Lineare Funktionen
54 min, 6 Aufgaben #3800Dieses Arbeitsblatt führt an lineare Funktionen heran. Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.
Übungen - konstruieren und argumentieren
69 min, 8 Aufgaben #4030Aufgaben zur Konstruktion von Dreiecken samt Inkreis, Umkreis und Schwerpunkt, sowie besondere Vierecke wie Raute und Drachenviereck. Alle schön verpackt in Textaufgaben.
Klausurvorbereitung - Analysis - NRW
16 min, 3 Aufgaben #1581Beispielaufgaben für die zentralen Klausuren aus Nordrhein-Westfalen vom Schulministerium. Es wird vor allem das Verständnis der Ableitungsfunktion geprüft. Wachstumsgeschwindigkeiten, Funktionsgleichungen von Tangenten und Skizzen kommen vor.