Einleitung

Zwei Massen ziehen sich, je nach ihrer Entfernung voneinander, an. Eine Formel um auszurechnen wie stark gibt es natürlich auch.
Damit einhergehend gibt es Aufgaben, die gelöst werden können. Zum Beispiel Geschwindigkeiten von Raketen und Satelliten oder die Masse der Sonne.

81 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Welche Geschwindigkeit muss eine Rakete besitzen, die die Erde in einer Höhe von $ 2000\,\mathrm{km} $ zur Erdoberfläche umkreist?

2

Eine Person besitzt eine Masse von $ 75\,\mathrm{kg} $. Der Erdradius beträgt $ 6370\,\mathrm{km} $, die Erdbeschleunigung wird an der Erdoberfläche mit $ 9,81\,\mathrm{\frac{m}{s^2}} $ bestimmt. Bestimmen Sie daraus mit Hilfe des Gravitationsgesetzes die Masse der Erde.

3

Stellen Sie anschaulich dar, was im 3. Keplerschen Gesetz die Proportionalität
$ T^2 \sim a^3 $ bedeutet.

4

Die Umlaufdauer der Erde um die Sonne beträgt 1 Jahr = 365,25 d. Der Erdabstand $ r $ ist 1 AE = 150 Mill. km. Bestimmen Sie daraus die Sonnenmasse $ M $ und geben Sie das Verhältnis Sonnenmasse $ M $ zur Erdmasse $ m $ an.

5

In welcher Entfernung vom Erdmittelpunkt wird ein zwischen Erde und Mond befindlicher Gegenstand schwerelos?

6

Auf einer Umlaufbahn um die Erde bewegen sich hintereinander zwei Raumschiffe. Das hinten fliegende Raumschiff soll für ein Kopplungsmanöver das vordere Raumschiff einholen. Es hat zwei Triebwerke, eins in Flugrichtung und eins entgegen der Flugrichtung. Welches muss gezündet werden, um das vordere Raumschiff einzuholen?

Das Triebwerk in Flugrichtung.

Mit diesen beiden Triebwerken allein ist es nicht möglich.

Das Triebwerk entgegen der Flugrichtung.

7

In welchem Abstand zur Erdoberfläche müsste ein Satellit die Erde am Äquator umkreisen, wenn er über einem Punkt der Erdoberfläche stillzustehen scheint? Welche Bahngeschwindigkeit besitzt der auf dieser Bahn?

8

In welchem Abstand zur Sonne müsste ein Himmelskörper diese umkreisen, wenn seine Umlaufdauer $ 2,0 $ Jahre betragen würde?

PDF zum Drucken

Weitere Arbeitsblätter

Gartenhaus Abitur GK Berlin 2016

62 min, 6 Aufgaben #1981

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Klausurvorbereitung - Analysis - NRW

16 min, 3 Aufgaben #1581

Beispielaufgaben für die zentralen Klausuren aus Nordrhein-Westfalen vom Schulministerium. Es wird vor allem das Verständnis der Ableitungsfunktion geprüft. Wachstumsgeschwindigkeiten, Funktionsgleichungen von Tangenten und Skizzen kommen vor.

Terme und Gleichungen in Texten

57 min, 10 Aufgaben #1300

Das Arbeitsblatt besteht aus 3 Teilen. Aufgestellt werden müssen Terme (1), einfache Gleichungen (2), schwierige Gleichungen (3).

Lern­kontrolle Wahr­scheinlich­keits­rechnung

36 min, 4 Aufgaben #7392

Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.

Teilweises Wurzelziehen - Rationalmachen des Nenners

52 min, 11 Aufgaben #0992

Aufgaben zum teilweisen, auch partiellen, Wurzelziehen mit Zahlen, Variablen und Faktorisieren. Einfache Aufgaben zum Rationalmachen des Nenners.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum