Einleitung
Originaler Test mit 40 erreichbaren Punkten.
31 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.
Aufgaben
Gegeben ist die Funktion $ f(x) = -x^2 - x + 6 $.
Geben Sie $ f $ in Scheitelpunktsform und in ihrer Linearfaktordarstellung an.
Notieren Sie alle Achsenschnittpunkte und den Scheitelpunkt.
Zeichnen Sie den Graph von $ f $ in das Koordinatensystem.
Eine Gerade $ g $ verläuft durch die Punkte $ \EPUNKT{P_1}{-1}{4} $ und $ \EPUNKT{P_2}{1}{8} $.
Ermitteln Sie die Steigung und den y-Achsenabschnitt von $ g $. Geben Sie dann die Funktionsgleichung an.
Untersuchen Sie die Lage der Geraden $ g $ zur Parabel $ f $ aus Aufgabe 1 rechnerisch. Um was für eine Gerade handelt es sich?
Zeichnen Sie $ g $ in dasselbe Koordinatensystem aus Aufgabe 1 und überprüfen Sie Ihre Ergebnisse anhand der Graphen.
Gegeben ist die Funktion $ f(x) = \frac{1}{2}x^4 + 2x^3 - x+1 $.
Wie nennt man diese Form der Darstellung? Geben Sie den Grad von $ f $ an und nennen Sie alle Koeffizienten.
Geben Sie für die Potenzfunktion $ p(x) = -x^3 $ alle charakteristischen Punkte an.
Nennen Sie wesentliche Eigenschaften und beschreiben Sie den Verlauf des Graphen von $ p $.
Weitere Arbeitsblätter
Glücksrad mit Urne - Übungsaufgabe Stochastik LK
21 min, 6 Aufgaben #1710Eine Übungsaufgabe, die Urne und Glücksrad kombiniert. Nebst Baumdiagrammen, Bernoulli und der summierten Binomialverteilung werden auch Gewinnerwartung und Prozentrechnung beim Kreis benötigt.
Terme vereinfachen
35 min, 4 Aufgaben #2832Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division. Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.
Extremwertaufgaben
80 min, 8 Aufgaben #1597Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
Ikarus Abitur GK Berlin 2016
64 min, 6 Aufgaben #1980Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Übungsaufgaben zur Stochastik
30 min, 6 Aufgaben #1654Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.