Einleitung
Originaler Test mit 40 erreichbaren Punkten.
31 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.
Aufgaben
Gegeben ist die Funktion $ f(x) = -x^2 - x + 6 $.
Geben Sie $ f $ in Scheitelpunktsform und in ihrer Linearfaktordarstellung an.
Notieren Sie alle Achsenschnittpunkte und den Scheitelpunkt.
Zeichnen Sie den Graph von $ f $ in das Koordinatensystem.

Eine Gerade $ g $ verläuft durch die Punkte $ \EPUNKT{P_1}{-1}{4} $ und $ \EPUNKT{P_2}{1}{8} $.
Ermitteln Sie die Steigung und den y-Achsenabschnitt von $ g $. Geben Sie dann die Funktionsgleichung an.
Untersuchen Sie die Lage der Geraden $ g $ zur Parabel $ f $ aus Aufgabe 1 rechnerisch. Um was für eine Gerade handelt es sich?
Zeichnen Sie $ g $ in dasselbe Koordinatensystem aus Aufgabe 1 und überprüfen Sie Ihre Ergebnisse anhand der Graphen.
Gegeben ist die Funktion $ f(x) = \frac{1}{2}x^4 + 2x^3 - x+1 $.
Wie nennt man diese Form der Darstellung? Geben Sie den Grad von $ f $ an und nennen Sie alle Koeffizienten.
Geben Sie für die Potenzfunktion $ p(x) = -x^3 $ alle charakteristischen Punkte an.
Nennen Sie wesentliche Eigenschaften und beschreiben Sie den Verlauf des Graphen von $ p $.
Weitere Arbeitsblätter
Kathetensatz und Höhensatz
37 min, 6 Aufgaben #0045Eine Hälfte beschäftigt sich mit Berechnungen am rechtwinkligen Dreieck. Die andere Hälfte sind schwierigere Textaufgaben.
Pythagoras - Anwendungen
49 min, 6 Aufgaben #0040Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.
Quadratische Funktionen
53 min, 6 Aufgaben #0070Eine Einführung in quadratische Funktionen. Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen. Ausblick könnte die quadratische Ergänzung sein.
Textaufgaben mit mehreren Unbekannten
46 min, 11 Aufgaben #1336Elf Textaufgaben bei denen immer zunächst zwei Gleichungen mit zwei Unbekannten aufgestellt und dann gelöst werden müssen.