Einleitung

Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal?
Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

72 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Die Zahl 12 soll so in zwei Summanden zerlegt werden, dass

die Summe der Quadrate der gesuchten Summanden möglichst klein wird;

ihr Produkt maximal wird;

die Summe aus dem Quadrat des einen Summanden und dem doppelten Quadrat des anderen Summanden minimal wird.

2

Bestimme die Seitenlängen und den Umfang desjenigen Rechtecks, das in einem Kreis mit dem Radius $ r = 3\sqrt{2}\,\mathrm{cm}$ einbeschrieben ist und maximalen Umfang $u$ hat.

3

Der Graph der Funktion $ f(x) = \sqrt{r^2 - x^2} $ mit $ r > 0$ und die x-Achse schließen eine Fläche ein. In diese Fläche wird ein Rechteck so gelegt, dass die Seiten jeweils parallel zu den Koordinatenachsen verlaufen.

Bestimme die Koordinaten der Eckpunkte des Rechtecks, dessen Flächeninhalt maximal ist und gib den maximalen Flächeninhalt an.

4

Es sei $ f(x) = (x-3)^2 + 2,5 $ für $ 0\le x \le 3 $. Betrachtet werden sollen alle achsenparallele Rechtecke mit dem Ursprung als einen Eckpunkt und einem Punkt des Graphen als gegenüberliegenden Eckpunkt.

Berechne die Koordinaten der Eckpunkte des Rechteckes, dessen Flächeninhalt maximal ist und gib den Flächeninhalt an.

5

Eine Konservendose von 1 Liter Inhalt soll so bemessen sein, dass möglichst wenig Material zur Herstellung gebraucht wird. Berechnen Sie Durchmesser und Höhe.

6

Ein oben offenes Gefäß besteht aus dem Mantel eines Zylinders mit angesetzter Halbkugel. Die gesamte Außenfläche des Gefäßes habe einen Flächeninhalt von $ 400\,\mathrm{cm}^2 $.

Bestimme den Radius und die Höhe so, dass das Volumen des Körpers maximal wird.

7

Aus einer dreieckigen Marmorplatte mit x = 50cm und y = 70cm soll ein rechteckiges Stück herausgeschnitten werden.

Berechne Breite und Höhe, sodass der Flächeninhalt des Rechteckes maximal ist.

Ein Bild aus der Koonys Schule Aufgabe d8f22.

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis Leistungskurs


Weitere Arbeitsblätter

Klassenarbeit binomische Formeln

33 min, 8 Aufgaben #3132

Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.

Sinus - Kosinus - Tangens

41 min, 6 Aufgaben #7000

Sinus, Kosinus und Tangens von leicht bis schwer. Zunächst Aufgaben mit den Gleichungen und all ihren Varianten. Danach Standard-Aufgaben an rechtwinkligen Dreiecken und die zweite Hälfte sind Textaufgaben bei denen das gleiche noch einmal drankommt mit dem gewissen Etwas, das anspruchsvolle Aufgaben ausmacht.

Gauß Verfahren

84 min, 7 Aufgaben #1777

Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.

IT Vorschau-Demnächst

0 min, 4 Aufgaben #7778

Cooles Blatt.

Abschlussarbeit Klasse 9 mit Taschenrechner

38 min, 3 Aufgaben #2852

Aufgaben quer durch die 9. Klasse. Statistik, Diagramme, Volumenberechnungen am Kegel, Funktionen und mehr im Koordinatensystem. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum