Einleitung

Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal?
Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.

72 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Die Zahl 12 soll so in zwei Summanden zerlegt werden, dass

die Summe der Quadrate der gesuchten Summanden möglichst klein wird;

ihr Produkt maximal wird;

die Summe aus dem Quadrat des einen Summanden und dem doppelten Quadrat des anderen Summanden minimal wird.

2

Bestimme die Seitenlängen und den Umfang desjenigen Rechtecks, das in einem Kreis mit dem Radius $ r = 3\sqrt{2}\,\mathrm{cm}$ einbeschrieben ist und maximalen Umfang $u$ hat.

3

Der Graph der Funktion $ f(x) = \sqrt{r^2 - x^2} $ mit $ r > 0$ und die x-Achse schließen eine Fläche ein. In diese Fläche wird ein Rechteck so gelegt, dass die Seiten jeweils parallel zu den Koordinatenachsen verlaufen.

Bestimme die Koordinaten der Eckpunkte des Rechtecks, dessen Flächeninhalt maximal ist und gib den maximalen Flächeninhalt an.

4

Es sei $ f(x) = (x-3)^2 + 2,5 $ für $ 0\le x \le 3 $. Betrachtet werden sollen alle achsenparallele Rechtecke mit dem Ursprung als einen Eckpunkt und einem Punkt des Graphen als gegenüberliegenden Eckpunkt.

Berechne die Koordinaten der Eckpunkte des Rechteckes, dessen Flächeninhalt maximal ist und gib den Flächeninhalt an.

5

Eine Konservendose von 1 Liter Inhalt soll so bemessen sein, dass möglichst wenig Material zur Herstellung gebraucht wird. Berechnen Sie Durchmesser und Höhe.

6

Ein oben offenes Gefäß besteht aus dem Mantel eines Zylinders mit angesetzter Halbkugel. Die gesamte Außenfläche des Gefäßes habe einen Flächeninhalt von $ 400\,\mathrm{cm}^2 $.

Bestimme den Radius und die Höhe so, dass das Volumen des Körpers maximal wird.

7

Aus einer dreieckigen Marmorplatte mit x = 50cm und y = 70cm soll ein rechteckiges Stück herausgeschnitten werden.

Berechne Breite und Höhe, sodass der Flächeninhalt des Rechteckes maximal ist.

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis Leistungskurs


Weitere Arbeitsblätter

Kathetensatz und Höhensatz

37 min, 6 Aufgaben #0045

Eine Hälfte beschäftigt sich mit Berechnungen am rechtwinkligen Dreieck. Die andere Hälfte sind schwierigere Textaufgaben.

Bernoulli-Ketten

43 min, 4 Aufgaben #1700

Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.

Glücksrad mit Urne - Übungsaufgabe Stochastik LK

21 min, 6 Aufgaben #1710

Eine Übungsaufgabe, die Urne und Glücksrad kombiniert. Nebst Baumdiagrammen, Bernoulli und der summierten Binomialverteilung werden auch Gewinnerwartung und Prozentrechnung beim Kreis benötigt.

Hypothesentests - Signifikanztests

68 min, 5 Aufgaben #1740

Aufgaben bei denen Nullhypothesen aufgestellt und mit Entscheidungsregeln angenommen oder verworfen werden. Es kommen einseitige und zweiseitige Signifikanztests vor.

Textgleichungen mit Brüchen für Profis 2v3

31 min, 7 Aufgaben #1342

Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum