Einleitung
Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal?
Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
80 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.
Aufgaben
Ein Schiff bewegt sich auf einer Kurve, die sich durch den Graphen der Funktion $ f(x) = \sqrt{x} $ beschreiben lässt.
Im Punkt $ \EPUNKT{A}{3}{0} $ sitzt ein Beobachter.
In welchem Punkt kommen sich Schiff und Beobachter am nächsten?
Zerlege die Zahl 20 in zwei (nicht unbedingt ganzzahlige) Teile - und zwar so, dass das Produkt der einen Zahl mit dem Quadrat der anderen Zahl so groß wie möglich ist.
Auf einer Wiese soll mit 50m Zaun ein rechteckiges Stück eingezäunt werden. Wie lang müssen die Seitenlängen des Rechtecks sein, damit die eingezäunte Fläche maximal ist?
Wie muss man bei Aufgabe 4) die Maße wählen, wenn eine bestehende Mauer als Zaunseite zu Hilfe genommen werden kann und somit nur drei Rechteckseiten eingezäunt werden müssen?
Eine Spielzeugfabrik baut zwei Puppentypen A und B.
Hierbei werden $ x $ Produktionseinheiten Puppen der Sorte A und $ y $ Einheiten Puppen des Typs B hergestellt ($ x $ und $ y $ jeweils in Hundert Stück). Die Firma verdient am Typ A doppelt so viel wie am Typ B. Weiter gilt $ y = \frac{40-10x}{5-x} $ mit $ 0 \le x \le 4 $.
Welche Puppenzahlen sollten produziert werden?
Bestimme zwei positive Zahlen, deren Summe 16 ist und deren Produkt so groß wie möglich ist.
Kann man das Problem lösen, wenn das Produkt minimal sein soll? Begründe.
Ein Motorradfahrer steht im Punkt P mitten in einer ebenen Wüstenlandschaft, die an eine geradlinige, geteerte Straße grenzt. Er benötigt zum nächstgelegenen Punkt A auf der Straße 5 Minuten. Berechne für die folgenden Fälle die schnellstmögliche Zeit, in der der Fahrer zum auf der Straße gelegenen Punkt B gelangt. Der Motorradfahrer fährt in der Wüste mit einer Geschwindigkeit von $ 60\,\frac{km}{h} $ und auf der Straße mit $ 100\,\frac{km}{h} $.
B ist 10km von A entfernt.
B ist 15km von A entfernt.
B ist für den Fahrer 15 Minuten von A entfernt.
Weitere Arbeitsblätter
Klammern auflösen
51 min, 5 Aufgaben #3335Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz). Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.
Diagnosetest konstruieren und argumentieren
36 min, 5 Aufgaben #4025Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.
Felder und Kreise - GK Klausur Physik
40 min, 3 Aufgaben #6123Originale Physik Klausur für einen Grundkurs im 2. Semester aus Berlin. 39 Punkte, 90min
Klassenarbeit - Wurzelgesetze und Potenzgesetze
24 min, 6 Aufgaben #0995Originale Arbeit mit 36 erreichbaren Punkten.
Ebenengleichungen
22 min, 4 Aufgaben #1925Überblick aller drei Arten von Ebenengleichungen und wie man jeweils von einer Form in die andere kommt. Paramatergleichung, Normalengleichung und Koordinantengleichungen werden alle untereinander umgeformt.