Einleitung
Sinus, Kosinus und Tangens von leicht bis schwer.
Zunächst Aufgaben mit den Gleichungen und all ihren Varianten. Danach Standard-Aufgaben an rechtwinkligen Dreiecken und die zweite Hälfte sind Textaufgaben bei denen das gleiche noch einmal drankommt mit dem gewissen Etwas, das anspruchsvolle Aufgaben ausmacht.
41 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Bestimme die Werte $x$, $y$ und $z$, sowie die Winkelgrößen $\alpha$, $\beta$ und $\gamma$.
Runde auf Tausendstel.
$\sin(30^\circ) = x$
$\cos(30^\circ) = y$
$\tan(30^\circ) = z$
$\sin(\alpha) = 0,149$
$\cos(\beta) = 0,149$
$\tan(\gamma) = 0,149$
Bestimme die Unbekannte.
$\sin(44^\circ) = \frac{a}{8}$
$\cos(23^\circ) = \frac{b}{9}$
$\tan(65^\circ) = \frac{c}{7}$
$\sin(56^\circ) = \frac{4}{c_1}$
$\cos(37^\circ) = \frac{3}{c_2}$
$\tan(42^\circ) = \frac{6}{c_3}$
Berechne die fehlenden Stücke des rechtwinkligen Dreiecks ABC.
$b = 1,7\,\mathrm{cm}$, $\beta = 40^\circ$, $\alpha = 90^\circ$
$c = 3,3\,\mathrm{km}$, $a = 6,2\,\mathrm{km}$, $\beta = 90^\circ$
Eine 6,7m lange Leiter wird an einen Baum gelehnt. Der Fuß der Leiter steht dabei 2,1m vor dem Baum.
Bestimme die Größe des Neigungswinkels zwischen der Leiter und dem waagerechten Boden.
Wie weit müsste der Fuß der Leiter vom Baum entfernt sein, damit ein Neigungswinkel von $47^\circ$ vorliegt?
Eine Seilbahn überwindet auf einer Strecke von 500m eine Höhendifferenz von 130m.
Wie groß ist der Steigungswinkel?
Die Seilbahn bewegt sich mit 7$\,\frac{km}{h}$. Wie viele Minuten ist sie unterwegs?
Von einem 200m entfernten Kirchturm wird mit Hilfe eines Theodoliten der Höhenwinkel $\alpha = 47^\circ$ gemessen. Der Beobachtungspunkt liegt 1,5m höher als der Fußpunkt des Turmes.
Wie hoch ist der Turm?
Wie lang wäre eine Seilbahn vom Beobachtungspunkt zur Spitze des Kirchturms?
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Klausur - Grundkurs - 2. Semester
42 min, 3 Aufgaben #1660Originale Grundkurs Klausur aus Berlin eines 2. Semesters. Der Hauptteil ist die Kurvendiskussion einer e-Funktion. Wendetangente, Stammfunktion und Flächeninhalt inklusive. Die andere Hälfte beinhaltet Integralrechnung mit Parametern und ein paar kombinatorische Aufgaben.
Lernkontrolle Wahrscheinlichkeitsrechnung
36 min, 4 Aufgaben #7392Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.
Quadratische Gleichungen
74 min, 7 Aufgaben #0062Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.
Klassenarbeit binomische Formeln
33 min, 8 Aufgaben #3132Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.
Ableitungsfunktion und ihre Anwendung
92 min, 12 Aufgaben #1590Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.