Einleitung

Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.

98 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Gegeben ist die Funktion $ f(x) = x^2\cdot(x-3) $.

Ermitteln Sie die Nullstellen von $ f $ und skizzieren Sie den Graphen mit Hilfe einer Wertetabelle für $ -1 \le x \le 3 $.

Bilden Sie die Ableitungsfunktion $ f $.

Wie groß ist die Steigung der Funktion an den Stellen $ x_1 = -1 $ und $ x_2 = 1 $?

Zeichnen Sie die Steigungsfunktion in dasselbe Achsenkreuz.

2

Gegeben ist die Funktion $ f(x) = x^2 - 3x $.

Skizzieren Sie den Graphen von $ f $ für $ -1 \le x \le 4 $.

Wie groß ist die Steigung von $ f $ bei $ x_0 = 2 $.

Wie groß ist der Steigungswinkel von $ f $ an dieser Stelle?

Unter welchem Winkel schneidet der Graph von $ f $ die y-Achse?

3

Gegeben ist die Funktion $ f(x) = -\frac{1}{2}x^2 + 2x + 2 $.

Wo liegen die Nullstellen von $ f $?

Wo liegt der Hochpunkt von $ f $?

Unter welchen Winkeln schneidet der Graph von $ f $ die Koordinatenachsen?

4

Ermitteln Sie die Gleichung der Tangente $ t $ an die Funktion $ f(x) = x^2 - 3x $ an der Stelle $ x_0 = 2 $.

5

Bestimmen Sie die Tangenten der Funktion $ f(x) = -\frac{1}{2}x^2 + 2x + 2 $ in den Achsenschnittpunkten.

6

Gegeben sind die Funktionen $ f(x) = -x^2 + 8x - 11 $ und $ g(x) = x-1 $.

In welchen Punkten schneiden sich $ f $ und $ g $?

Wie groß sind die Schnittwinkel von $ f $ und $ g $ in diesen Punkten?

7

Gegeben sind die Funktionen $ f(x) = \frac{1}{3}x^3 - x^2 - 2 $ und $ g(x) = -x^2 + 4x - \frac{17}{3} $.

Bearbeiten Sie, wie in Aufgabe 6.

8

Gegeben sind die Funktionen $ f(x) = x^2 $ und $ g(x) = -x^2 + 4x - 2 $.

Zeichnen Sie die Funktionen für $ -1 \le x \le 3 $.

Zeigen Sie, dass die Graphen sich berühren.

Ermitteln Sie die Gleichung der Berührtangente.

PDF zum Drucken

Weitere Arbeitsblätter

Terme und Gleichungen in Texten

57 min, 10 Aufgaben #1300

Das Arbeitsblatt besteht aus 3 Teilen. Aufgestellt werden müssen Terme (1), einfache Gleichungen (2), schwierige Gleichungen (3).

Sinus - Kosinus - Tangens

41 min, 6 Aufgaben #7000

Sinus, Kosinus und Tangens von leicht bis schwer. Zunächst Aufgaben mit den Gleichungen und all ihren Varianten. Danach Standard-Aufgaben an rechtwinkligen Dreiecken und die zweite Hälfte sind Textaufgaben bei denen das gleiche noch einmal drankommt mit dem gewissen Etwas, das anspruchsvolle Aufgaben ausmacht.

Klammern auflösen

35 min, 8 Aufgaben #3336

Das Vereinfachen von Termen mit Klammern wird Stück für Stück gezeigt. Mit dabei sind Minusklammern, das einfache und das doppelte Distributivgesetz. Nach den Aufgaben ist man fachlich soweit sich als nächstes an die binomischen Formeln vagen zu können.

Klassenarbeit Wachstum und Zerfall

38 min, 5 Aufgaben #6551

Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs. Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum