Einleitung

Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.

98 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Gegeben ist die Funktion $ f(x) = x^2\cdot(x-3) $.

Ermitteln Sie die Nullstellen von $ f $ und skizzieren Sie den Graphen mit Hilfe einer Wertetabelle für $ -1 \le x \le 3 $.

Bilden Sie die Ableitungsfunktion $ f $.

Wie groß ist die Steigung der Funktion an den Stellen $ x_1 = -1 $ und $ x_2 = 1 $?

Zeichnen Sie die Steigungsfunktion in dasselbe Achsenkreuz.

2

Gegeben ist die Funktion $ f(x) = x^2 - 3x $.

Skizzieren Sie den Graphen von $ f $ für $ -1 \le x \le 4 $.

Wie groß ist die Steigung von $ f $ bei $ x_0 = 2 $.

Wie groß ist der Steigungswinkel von $ f $ an dieser Stelle?

Unter welchem Winkel schneidet der Graph von $ f $ die y-Achse?

3

Gegeben ist die Funktion $ f(x) = -\frac{1}{2}x^2 + 2x + 2 $.

Wo liegen die Nullstellen von $ f $?

Wo liegt der Hochpunkt von $ f $?

Unter welchen Winkeln schneidet der Graph von $ f $ die Koordinatenachsen?

4

Ermitteln Sie die Gleichung der Tangente $ t $ an die Funktion $ f(x) = x^2 - 3x $ an der Stelle $ x_0 = 2 $.

5

Bestimmen Sie die Tangenten der Funktion $ f(x) = -\frac{1}{2}x^2 + 2x + 2 $ in den Achsenschnittpunkten.

6

Gegeben sind die Funktionen $ f(x) = -x^2 + 8x - 11 $ und $ g(x) = x-1 $.

In welchen Punkten schneiden sich $ f $ und $ g $?

Wie groß sind die Schnittwinkel von $ f $ und $ g $ in diesen Punkten?

7

Gegeben sind die Funktionen $ f(x) = \frac{1}{3}x^3 - x^2 - 2 $ und $ g(x) = -x^2 + 4x - \frac{17}{3} $.

Bearbeiten Sie, wie in Aufgabe 6.

8

Gegeben sind die Funktionen $ f(x) = x^2 $ und $ g(x) = -x^2 + 4x - 2 $.

Zeichnen Sie die Funktionen für $ -1 \le x \le 3 $.

Zeigen Sie, dass die Graphen sich berühren.

Ermitteln Sie die Gleichung der Berührtangente.

PDF zum Drucken

Weitere Arbeitsblätter

Übungen zu kombinatorischen Abzählverfahren

29 min, 8 Aufgaben #1648

Ob mit oder ohne Reihenfolge und mit oder ohne Wiederholung: die Frage, die sich stellt, ist immer die gleiche: wie viele Möglichkeiten gibt es? Bei den Aufgaben kommt man noch häufig durch Abzählen zur Lösung.

Diagnosetest konstruieren und argumentieren

36 min, 5 Aufgaben #4025

Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.

Anwendungsaufgaben Dreiecksmessung

59 min, 5 Aufgaben #7020

Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.

Ableitungsfunktion

34 min, 8 Aufgaben #1588

Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden. Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.

Klassenarbeit Wachstum und Zerfall

38 min, 5 Aufgaben #6551

Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs. Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum