Einleitung
Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.
98 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.
Aufgaben
Gegeben ist die Funktion $ f(x) = x^2\cdot(x-3) $.
Ermitteln Sie die Nullstellen von $ f $ und skizzieren Sie den Graphen mit Hilfe einer Wertetabelle für $ -1 \le x \le 3 $.
Bilden Sie die Ableitungsfunktion $ f $.
Wie groß ist die Steigung der Funktion an den Stellen $ x_1 = -1 $ und $ x_2 = 1 $?
Zeichnen Sie die Steigungsfunktion in dasselbe Achsenkreuz.
Gegeben ist die Funktion $ f(x) = x^2 - 3x $.
Skizzieren Sie den Graphen von $ f $ für $ -1 \le x \le 4 $.
Wie groß ist die Steigung von $ f $ bei $ x_0 = 2 $.
Wie groß ist der Steigungswinkel von $ f $ an dieser Stelle?
Unter welchem Winkel schneidet der Graph von $ f $ die y-Achse?
Gegeben ist die Funktion $ f(x) = -\frac{1}{2}x^2 + 2x + 2 $.
Wo liegen die Nullstellen von $ f $?
Wo liegt der Hochpunkt von $ f $?
Unter welchen Winkeln schneidet der Graph von $ f $ die Koordinatenachsen?
Ermitteln Sie die Gleichung der Tangente $ t $ an die Funktion $ f(x) = x^2 - 3x $ an der Stelle $ x_0 = 2 $.
Bestimmen Sie die Tangenten der Funktion $ f(x) = -\frac{1}{2}x^2 + 2x + 2 $ in den Achsenschnittpunkten.
Gegeben sind die Funktionen $ f(x) = -x^2 + 8x - 11 $ und $ g(x) = x-1 $.
In welchen Punkten schneiden sich $ f $ und $ g $?
Wie groß sind die Schnittwinkel von $ f $ und $ g $ in diesen Punkten?
Gegeben sind die Funktionen $ f(x) = \frac{1}{3}x^3 - x^2 - 2 $ und $ g(x) = -x^2 + 4x - \frac{17}{3} $.
Bearbeiten Sie, wie in Aufgabe 6.
Gegeben sind die Funktionen $ f(x) = x^2 $ und $ g(x) = -x^2 + 4x - 2 $.
Zeichnen Sie die Funktionen für $ -1 \le x \le 3 $.
Zeigen Sie, dass die Graphen sich berühren.
Ermitteln Sie die Gleichung der Berührtangente.
Weitere Arbeitsblätter
Kepler und Gravitation
81 min, 8 Aufgaben #6030Zwei Massen ziehen sich, je nach ihrer Entfernung voneinander, an. Eine Formel um auszurechnen wie stark gibt es natürlich auch. Damit einhergehend gibt es Aufgaben, die gelöst werden können. Zum Beispiel Geschwindigkeiten von Raketen und Satelliten oder die Masse der Sonne.
Übungen zu kombinatorischen Abzählverfahren
29 min, 8 Aufgaben #1648Ob mit oder ohne Reihenfolge und mit oder ohne Wiederholung: die Frage, die sich stellt, ist immer die gleiche: wie viele Möglichkeiten gibt es? Bei den Aufgaben kommt man noch häufig durch Abzählen zur Lösung.
Strahlensätze *
27 min, 3 Aufgaben #4181Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.
Binomische Formeln
89 min, 11 Aufgaben #3120Alles rund um die binomischen Formeln. Voraussetzung ist das Auflösen von doppelten Klammern (doppeltes Distributivgesetz). Darauf aufbauend wird auf das Vereinfachen von Termen eingegangen bei denen die binomischen Formeln von einfach bis schwer zur Anwendung kommen. Danach wird der Spieß umgedreht und Terme mit den binomischen Formeln faktorisiert. Krönender Abschluss bilden Gleichungen bei denen man ... *trommelwirbel* ... binomische Formeln braucht.
Berechnungen an Körpern
62 min, 6 Aufgaben #9598Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.