Einleitung

Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.

98 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Gegeben ist die Funktion $ f(x) = x^2\cdot(x-3) $.

Ermitteln Sie die Nullstellen von $ f $ und skizzieren Sie den Graphen mit Hilfe einer Wertetabelle für $ -1 \le x \le 3 $.

Bilden Sie die Ableitungsfunktion $ f $.

Wie groß ist die Steigung der Funktion an den Stellen $ x_1 = -1 $ und $ x_2 = 1 $?

Zeichnen Sie die Steigungsfunktion in dasselbe Achsenkreuz.

2

Gegeben ist die Funktion $ f(x) = x^2 - 3x $.

Skizzieren Sie den Graphen von $ f $ für $ -1 \le x \le 4 $.

Wie groß ist die Steigung von $ f $ bei $ x_0 = 2 $.

Wie groß ist der Steigungswinkel von $ f $ an dieser Stelle?

Unter welchem Winkel schneidet der Graph von $ f $ die y-Achse?

3

Gegeben ist die Funktion $ f(x) = -\frac{1}{2}x^2 + 2x + 2 $.

Wo liegen die Nullstellen von $ f $?

Wo liegt der Hochpunkt von $ f $?

Unter welchen Winkeln schneidet der Graph von $ f $ die Koordinatenachsen?

4

Ermitteln Sie die Gleichung der Tangente $ t $ an die Funktion $ f(x) = x^2 - 3x $ an der Stelle $ x_0 = 2 $.

5

Bestimmen Sie die Tangenten der Funktion $ f(x) = -\frac{1}{2}x^2 + 2x + 2 $ in den Achsenschnittpunkten.

6

Gegeben sind die Funktionen $ f(x) = -x^2 + 8x - 11 $ und $ g(x) = x-1 $.

In welchen Punkten schneiden sich $ f $ und $ g $?

Wie groß sind die Schnittwinkel von $ f $ und $ g $ in diesen Punkten?

7

Gegeben sind die Funktionen $ f(x) = \frac{1}{3}x^3 - x^2 - 2 $ und $ g(x) = -x^2 + 4x - \frac{17}{3} $.

Bearbeiten Sie, wie in Aufgabe 6.

8

Gegeben sind die Funktionen $ f(x) = x^2 $ und $ g(x) = -x^2 + 4x - 2 $.

Zeichnen Sie die Funktionen für $ -1 \le x \le 3 $.

Zeigen Sie, dass die Graphen sich berühren.

Ermitteln Sie die Gleichung der Berührtangente.

PDF zum Drucken

Weitere Arbeitsblätter

Kleine vermischte Übungen - Klasse 10

39 min, 13 Aufgaben #7400

Bunt gemischte Textaufgaben zu verschiedenen Themen der 10. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.

Abschlussarbeit Klasse 9 mit Taschenrechner

42 min, 6 Aufgaben #2853

Aufgaben quer durch die 9. Klasse. Statistiken, lineare Gleichungen, Funktionen, Textgleichungen, Strahlensätze, Prozentrechnung und Flächeninhalten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Bernoulli-Ketten Anwendung

37 min, 4 Aufgaben #1701

Anwendungsaufgaben zu Bernoulli-Ketten. Die ersten zwei Aufgaben fragen die grundlegenden Berechnungen ab. Die dritte ist vom Typ mindestens-mindestens und die vierte zeichnet sich durch eine äußert schwierige Aufgabenstellung aus. Ein kühler Kopf ist hier gefragt.

Lineare Gleichungssysteme lösen

62 min, 7 Aufgaben #3820

Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren. Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen. Am Ende noch Übungen bei denen auch Brüche vorkommen.

Anwendungsaufgaben radioaktiver Zerfall

58 min, 5 Aufgaben #6543

Textaufgaben über Stoffe, die exponentiell Zerfallen. Wertetabellen, Prozente und Halbwertszeiten kommen unter anderem vor. Es sind im Wesentlichen verschiedene Aufgaben zu Exponentialfunktionen deren Wachstumsfaktor kleiner als 1 ist.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum