Einleitung

Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.

98 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Gegeben ist die Funktion $ f(x) = x^2\cdot(x-3) $.

Ermitteln Sie die Nullstellen von $ f $ und skizzieren Sie den Graphen mit Hilfe einer Wertetabelle für $ -1 \le x \le 3 $.

Bilden Sie die Ableitungsfunktion $ f $.

Wie groß ist die Steigung der Funktion an den Stellen $ x_1 = -1 $ und $ x_2 = 1 $?

Zeichnen Sie die Steigungsfunktion in dasselbe Achsenkreuz.

2

Gegeben ist die Funktion $ f(x) = x^2 - 3x $.

Skizzieren Sie den Graphen von $ f $ für $ -1 \le x \le 4 $.

Wie groß ist die Steigung von $ f $ bei $ x_0 = 2 $.

Wie groß ist der Steigungswinkel von $ f $ an dieser Stelle?

Unter welchem Winkel schneidet der Graph von $ f $ die y-Achse?

3

Gegeben ist die Funktion $ f(x) = -\frac{1}{2}x^2 + 2x + 2 $.

Wo liegen die Nullstellen von $ f $?

Wo liegt der Hochpunkt von $ f $?

Unter welchen Winkeln schneidet der Graph von $ f $ die Koordinatenachsen?

4

Ermitteln Sie die Gleichung der Tangente $ t $ an die Funktion $ f(x) = x^2 - 3x $ an der Stelle $ x_0 = 2 $.

5

Bestimmen Sie die Tangenten der Funktion $ f(x) = -\frac{1}{2}x^2 + 2x + 2 $ in den Achsenschnittpunkten.

6

Gegeben sind die Funktionen $ f(x) = -x^2 + 8x - 11 $ und $ g(x) = x-1 $.

In welchen Punkten schneiden sich $ f $ und $ g $?

Wie groß sind die Schnittwinkel von $ f $ und $ g $ in diesen Punkten?

7

Gegeben sind die Funktionen $ f(x) = \frac{1}{3}x^3 - x^2 - 2 $ und $ g(x) = -x^2 + 4x - \frac{17}{3} $.

Bearbeiten Sie, wie in Aufgabe 6.

8

Gegeben sind die Funktionen $ f(x) = x^2 $ und $ g(x) = -x^2 + 4x - 2 $.

Zeichnen Sie die Funktionen für $ -1 \le x \le 3 $.

Zeigen Sie, dass die Graphen sich berühren.

Ermitteln Sie die Gleichung der Berührtangente.

PDF zum Drucken

Weitere Arbeitsblätter

Lineare Gleichungen

58 min, 5 Aufgaben #3738

Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer. Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.

Smartphones Abitur GK Berlin 2016

44 min, 6 Aufgaben #1991

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Wochenübung mit Klammern und Gleichungen

29 min, 7 Aufgaben #1234

7 Aufgaben für 7 Tage. Es müssen Klammern aufgelöst, Terme zusammengefasst und vor allem Gleichungen gelöst werden. Dabei treten unter anderem auch mal Brüche, die binomischen Formeln und die pq-Formel mit auf.

Anwendungsaufgaben Körper

13 min, 4 Aufgaben #9599

Zusammengesetzte Aufgaben mit Zylindern, Kegeln und Kugeln bezüglich Volumen und Oberflächen. Kombiniert sind die Aufgaben mit Prozentrechnung, Dreisatz und Dichte.

Einführung Terme

65 min, 8 Aufgaben #2826

Erste Aufgaben zu Termen. Termwerte berechen, Terme vergleichen und Textgleichungen in beide Richtungen: sowohl Gleichungen aus Texten aufstellen aber auch Texte basierend auf Gleichungen verfassen. Die Hälfte der Aufgaben beschäftigt sich mit dem Zusammenfassen von Termen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum