Einleitung
Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.
98 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.
Aufgaben
Gegeben ist die Funktion $ f(x) = x^2\cdot(x-3) $.
Ermitteln Sie die Nullstellen von $ f $ und skizzieren Sie den Graphen mit Hilfe einer Wertetabelle für $ -1 \le x \le 3 $.
Bilden Sie die Ableitungsfunktion $ f $.
Wie groß ist die Steigung der Funktion an den Stellen $ x_1 = -1 $ und $ x_2 = 1 $?
Zeichnen Sie die Steigungsfunktion in dasselbe Achsenkreuz.
Gegeben ist die Funktion $ f(x) = x^2 - 3x $.
Skizzieren Sie den Graphen von $ f $ für $ -1 \le x \le 4 $.
Wie groß ist die Steigung von $ f $ bei $ x_0 = 2 $.
Wie groß ist der Steigungswinkel von $ f $ an dieser Stelle?
Unter welchem Winkel schneidet der Graph von $ f $ die y-Achse?
Gegeben ist die Funktion $ f(x) = -\frac{1}{2}x^2 + 2x + 2 $.
Wo liegen die Nullstellen von $ f $?
Wo liegt der Hochpunkt von $ f $?
Unter welchen Winkeln schneidet der Graph von $ f $ die Koordinatenachsen?
Ermitteln Sie die Gleichung der Tangente $ t $ an die Funktion $ f(x) = x^2 - 3x $ an der Stelle $ x_0 = 2 $.
Bestimmen Sie die Tangenten der Funktion $ f(x) = -\frac{1}{2}x^2 + 2x + 2 $ in den Achsenschnittpunkten.
Gegeben sind die Funktionen $ f(x) = -x^2 + 8x - 11 $ und $ g(x) = x-1 $.
In welchen Punkten schneiden sich $ f $ und $ g $?
Wie groß sind die Schnittwinkel von $ f $ und $ g $ in diesen Punkten?
Gegeben sind die Funktionen $ f(x) = \frac{1}{3}x^3 - x^2 - 2 $ und $ g(x) = -x^2 + 4x - \frac{17}{3} $.
Bearbeiten Sie, wie in Aufgabe 6.
Gegeben sind die Funktionen $ f(x) = x^2 $ und $ g(x) = -x^2 + 4x - 2 $.
Zeichnen Sie die Funktionen für $ -1 \le x \le 3 $.
Zeigen Sie, dass die Graphen sich berühren.
Ermitteln Sie die Gleichung der Berührtangente.
Weitere Arbeitsblätter
Gauß Verfahren
84 min, 7 Aufgaben #1777Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.
Klassenarbeit - Lineare Funktionen - Geradengleichungen
28 min, 5 Aufgaben #3810Originale Klassenarbeit einer 8. Klasse aus Berlin mit 48 erreichbaren Punkten. Vorhanden sind die Zwei-Punkte-Gleichung, Punktprüfung, diverse Verständnisaufgaben zu Steigung und Achsenabschnitt und eine Anwendungsaufgabe.
Ebenen - Übungsaufgaben
52 min, 6 Aufgaben #1933Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.
Hemden mit Mängeln Abitur LK Berlin 2011
32 min, 6 Aufgaben #1720Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.