Einleitung

Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer.
Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.

58 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

1

Bestimme die Lösungsmenge.

$x + 7 = 10$

$x + 11 = 11$

$x + 25 = 11$

$x+0,6 = 1,3$

$x + \frac{2}{3} = \frac{1}{6}$

$x - 6 = 18$

$x - 5 = -5$

$x - 5 = 5$

$x - \frac{5}{6} = \frac{1}{3}$

2

Bestimme die Lösungsmenge

$4x = 48$

$7x = -56$

$-11x = -88$

$\frac{1}{7}x = -5$

$\frac{1}{5}x = \frac{7}{10}$

$5u = -55$

$\frac{1}{2}v = \frac{3}{4}$

$-\frac{7}{9}y = -\frac{14}{3}$

$\frac{3}{4}x = -\frac{5}{8}$

3

Bestimme die Lösungsmenge

$3x + 11 = 20$

$9x-7 = 11$

$17-2x = 27$

$5x + 43 = 13$

$-8x+30 = 6$

$\frac{1}{5}x - 5 = -12$

$5 = 4a - 19$

$10 - \frac{1}{3}x = 6$

$72 - 8b = 64$

4

Bestimme die Lösungsmenge

$2x + 7x = 45$

$5x - 3x = 18$

$7x = 4x + 15$

$9x = 39 - 4x$

$8x + 3 = 5x + 24$

$21x + 17 = 2x + 72 + 8x$

5

Bestimme die Lösungsmenge

$16x + 19 = 5(4 + 3x)$

$3(17 + 8x) = 70x - 87$

$15x + 7(8 + 3x) = 15x + 182$

$7x + (x+8)\cdot3 = 4x$

$4(y-3)-2y = 5(3y+1)$

$7(2z+1)+5z = 3(8z-3)$

$4x-15(x-1)=2(6-3x)$

$(4x-3)\cdot5 - 6x = -4(5+9x)$

PDF zum Drucken

Weitere Arbeitsblätter

Wahrscheinlichkeiten

14 min, 2 Aufgaben #7390

Zwei originale Aufgaben der mittleren Schulabschluss Prüfung (MSA) von 2012 und 2014 aus Berlin.

Abschlussarbeit Klasse 9 mit Taschenrechner

38 min, 3 Aufgaben #2852

Aufgaben quer durch die 9. Klasse. Statistik, Diagramme, Volumenberechnungen am Kegel, Funktionen und mehr im Koordinatensystem. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Lichtkunst Abitur GK Hamburg

61 min, 6 Aufgaben #1945

Abituraufgabe aus der zentralen schriftlichen Abiturprüfung 2005 im Fach Mathematik aus Hamburg für den Grundkurs mit insgesamt 100 erreichbaren Punkten.

Klassenarbeit - Lineare Funktionen - Geradengleichungen

28 min, 5 Aufgaben #3810

Originale Klassenarbeit einer 8. Klasse aus Berlin mit 48 erreichbaren Punkten. Vorhanden sind die Zwei-Punkte-Gleichung, Punktprüfung, diverse Verständnisaufgaben zu Steigung und Achsenabschnitt und eine Anwendungsaufgabe.

Wurzelterme vereinfachen ohne Taschenrechner

41 min, 13 Aufgaben #0990

Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum