Einleitung

Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer.
Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.

58 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

1

Bestimme die Lösungsmenge.

$x + 7 = 10$

$x + 11 = 11$

$x + 25 = 11$

$x+0,6 = 1,3$

$x + \frac{2}{3} = \frac{1}{6}$

$x - 6 = 18$

$x - 5 = -5$

$x - 5 = 5$

$x - \frac{5}{6} = \frac{1}{3}$

2

Bestimme die Lösungsmenge

$4x = 48$

$7x = -56$

$-11x = -88$

$\frac{1}{7}x = -5$

$\frac{1}{5}x = \frac{7}{10}$

$5u = -55$

$\frac{1}{2}v = \frac{3}{4}$

$-\frac{7}{9}y = -\frac{14}{3}$

$\frac{3}{4}x = -\frac{5}{8}$

3

Bestimme die Lösungsmenge

$3x + 11 = 20$

$9x-7 = 11$

$17-2x = 27$

$5x + 43 = 13$

$-8x+30 = 6$

$\frac{1}{5}x - 5 = -12$

$5 = 4a - 19$

$10 - \frac{1}{3}x = 6$

$72 - 8b = 64$

4

Bestimme die Lösungsmenge

$2x + 7x = 45$

$5x - 3x = 18$

$7x = 4x + 15$

$9x = 39 - 4x$

$8x + 3 = 5x + 24$

$21x + 17 = 2x + 72 + 8x$

5

Bestimme die Lösungsmenge

$16x + 19 = 5(4 + 3x)$

$3(17 + 8x) = 70x - 87$

$15x + 7(8 + 3x) = 15x + 182$

$7x + (x+8)\cdot3 = 4x$

$4(y-3)-2y = 5(3y+1)$

$7(2z+1)+5z = 3(8z-3)$

$4x-15(x-1)=2(6-3x)$

$(4x-3)\cdot5 - 6x = -4(5+9x)$

PDF zum Drucken

Weitere Arbeitsblätter

Gauß Verfahren

84 min, 7 Aufgaben #1777

Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.

Wahrscheinlichkeiten

14 min, 2 Aufgaben #7390

Zwei originale Aufgaben der mittleren Schulabschluss Prüfung (MSA) von 2012 und 2014 aus Berlin.

Prozent- und Zinsrechnung | MSA

18 min, 2 Aufgaben #5102

Zwei originale Aufgaben aus Abschlussprüfungen für den mittleren Schulabschluss (MSA) aus Berlin. Die Rechnungen sind an sich einfach. Die Schwierigkeit besteht vor allem darin die Rechnungen aus den Textaufgaben zu extrahieren.

BBR - Vergleichsarbeit Mathematik

59 min, 14 Aufgaben #2508

Die Vergleichende Arbeit 2015 im Fach Mathematik zum Erwerb der Berufsbildungsreife bzw. des Hauptschulabschlusses. Bearbeitungszeit: 90 Minuten. Zugelassene Hilfsmittel: Formelübersicht und wissenschaftlicher nicht grafikfähiger Standard-Taschenrechner.

Ableitungsfunktion

34 min, 8 Aufgaben #1588

Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden. Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum