Einleitung
Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer.
Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.
58 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Bestimme die Lösungsmenge.
$x + 7 = 10$
$x + 11 = 11$
$x + 25 = 11$
$x+0,6 = 1,3$
$x + \frac{2}{3} = \frac{1}{6}$
$x - 6 = 18$
$x - 5 = -5$
$x - 5 = 5$
$x - \frac{5}{6} = \frac{1}{3}$
Bestimme die Lösungsmenge
$4x = 48$
$7x = -56$
$-11x = -88$
$\frac{1}{7}x = -5$
$\frac{1}{5}x = \frac{7}{10}$
$5u = -55$
$\frac{1}{2}v = \frac{3}{4}$
$-\frac{7}{9}y = -\frac{14}{3}$
$\frac{3}{4}x = -\frac{5}{8}$
Bestimme die Lösungsmenge
$3x + 11 = 20$
$9x-7 = 11$
$17-2x = 27$
$5x + 43 = 13$
$-8x+30 = 6$
$\frac{1}{5}x - 5 = -12$
$5 = 4a - 19$
$10 - \frac{1}{3}x = 6$
$72 - 8b = 64$
Bestimme die Lösungsmenge
$2x + 7x = 45$
$5x - 3x = 18$
$7x = 4x + 15$
$9x = 39 - 4x$
$8x + 3 = 5x + 24$
$21x + 17 = 2x + 72 + 8x$
Bestimme die Lösungsmenge
$16x + 19 = 5(4 + 3x)$
$3(17 + 8x) = 70x - 87$
$15x + 7(8 + 3x) = 15x + 182$
$7x + (x+8)\cdot3 = 4x$
$4(y-3)-2y = 5(3y+1)$
$7(2z+1)+5z = 3(8z-3)$
$4x-15(x-1)=2(6-3x)$
$(4x-3)\cdot5 - 6x = -4(5+9x)$
Weitere Arbeitsblätter
Kepler und Gravitation
81 min, 8 Aufgaben #6030Zwei Massen ziehen sich, je nach ihrer Entfernung voneinander, an. Eine Formel um auszurechnen wie stark gibt es natürlich auch. Damit einhergehend gibt es Aufgaben, die gelöst werden können. Zum Beispiel Geschwindigkeiten von Raketen und Satelliten oder die Masse der Sonne.
Wichtige Formeln im Gebäudeenergiegesetz
0 min, 4 Aufgaben #PQUVIn diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.
Terme addieren und subtrahieren
43 min, 8 Aufgaben #2828Terme vereinfachen indem man gleichartige Glieder zusammenfasst und ggf. vorher noch ein paar Klammern auflöst. Auch müssen Terme aufgestellt und Zahlenmauern gelöst werden.
Klassenarbeit - Wurzelgesetze und Potenzgesetze
24 min, 6 Aufgaben #0995Originale Arbeit mit 36 erreichbaren Punkten.