Einleitung

Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.

41 Minuten Erklärungen in 13 Aufgaben von Koonys Schule.

Aufgaben

1

$3\sqrt{2} + 4\sqrt{2}$

$9\sqrt{3} - 7\sqrt{3}$

$12\sqrt{11} + 5\sqrt{11}$

$4\sqrt{6} + 3\sqrt{6} - 2\sqrt{6}$

2

$4\sqrt{x} + 3\sqrt{x}$

$14\sqrt{x} - 9\sqrt{x}$

$2\sqrt{a}+3\sqrt{a} - \sqrt{a}$

$3\sqrt{x} - 2\sqrt{x} + 4\sqrt{x}$

3

$4\sqrt{3} + 2\sqrt{5} - 2\sqrt{3} + 8\sqrt{5}$

$6\sqrt{7} + 5\sqrt{2} - 3\sqrt{2} + 8\sqrt{7}$

$4\sqrt{11} + 3\sqrt{13} - \sqrt{11}- 4\sqrt{11}$

$9\sqrt{17} + 3\sqrt{21} - 14\sqrt{21} + 6\sqrt{17}$

4

$5\sqrt{x} + 2\sqrt{y} - 3\sqrt{x} - 4\sqrt{y}$

$5\sqrt{a} + 6\sqrt{b} - 8\sqrt{b} + 7\sqrt{a}$

$8\sqrt{2x} - 7\sqrt{3y} + 5\sqrt{2x} - 3\sqrt{3y}$

$12\sqrt{p} - 3\sqrt{3q} - 5\sqrt{3q} - 6\sqrt{p}$

5

$5\sqrt{a}- ( 7\sqrt{b} + 3\sqrt{a}) - \sqrt{a}$

$5\sqrt{x} - (3\sqrt{x} + \sqrt{y}) - (\sqrt{x} + 2\sqrt{y})$

$-(\sqrt{2a} + 7\sqrt{3b}) - (4\sqrt{2a} - 3\sqrt{3b})$

$\sqrt{x} - (2\sqrt{y} + 3\sqrt{z}) - (\sqrt{x} - \sqrt{y} - \sqrt{z})$

6

$\sqrt{8}\cdot\sqrt{2}$

$\sqrt{12}\cdot\sqrt{3}$

$\sqrt{12,5}\cdot\sqrt{2}$

$\sqrt{18}\cdot\sqrt{2}$

7

$\sqrt{5a}\cdot\sqrt{20a}$

$\sqrt{2a^2}\cdot\sqrt{18a^2}$

$\sqrt{72k} \cdot\sqrt{2k}$

$\sqrt{12x}\cdot\sqrt{3x^3}$

8

$\sqrt{\frac{1}{2}m}\cdot\sqrt{32m}$

$\sqrt{\frac{3}{4}x}\cdot\sqrt{\frac{3}{16}x}$

$\sqrt{0,18a}\cdot\sqrt{2a}$

$\sqrt{20y}\cdot\sqrt{1,8y}$

9

$\frac{\sqrt{72}}{\sqrt{2}}$

$\frac{\sqrt{125}}{\sqrt{5}}$

$\frac{\sqrt{20}}{\sqrt{\frac{4}{5}}}$

$\frac{\sqrt{\frac{1}{3}}}{\sqrt{\frac{3}{4}}}$

10

$\frac{\sqrt{x^3}}{\sqrt{x}}$

$\frac{\sqrt{\frac{a^2}{b}}}{\sqrt{b}}$

$\frac{\sqrt{xy}}{\sqrt{\frac{x}{y}}}$

$\frac{\sqrt{x^2 y^3}}{\sqrt{y}}$

11

$(\sqrt{12} + \sqrt{3})\sqrt{3}$

$\sqrt{2}(\sqrt{18} + \sqrt{32})$

$\sqrt{5}(\sqrt{5} + \sqrt{125})$

$\sqrt{6}(\sqrt{54} + \sqrt{6})$

$(\sqrt{32x} + \sqrt{8x})\sqrt{0,5x}$

$\sqrt{0,2a}\cdot(\sqrt{5a} - \sqrt{80a})$

12

$(3 + \sqrt{5})(3-\sqrt{5})$

$(\sqrt{8} - \sqrt{3})(\sqrt{8} + \sqrt{3})$

$(\sqrt{2} + \sqrt{7})(\sqrt{2} - \sqrt{7})$

$(\sqrt{12} + 3)(\sqrt{12} - 3)$

$(\sqrt{x^3} - \sqrt{2y})(\sqrt{x^3} + \sqrt{2y})$

$(\sqrt{5x^5} + \sqrt{2})(\sqrt{5x^5} - \sqrt{2})$

13

$(\sqrt{a} + \sqrt{b})^2$

$(3 - \sqrt{2})^2$

$(\sqrt{8} + \sqrt{3})^2$

$(\sqrt{5} - \sqrt{b})^2$

$(2\sqrt{a} - 3\sqrt{b})^2$

$(3\sqrt{x} + 2\sqrt{y})^2$

PDF zum Drucken

Weitere Arbeitsblätter

Teilweises Wurzelziehen - Rationalmachen des Nenners

52 min, 11 Aufgaben #0992

Aufgaben zum teilweisen, auch partiellen, Wurzelziehen mit Zahlen, Variablen und Faktorisieren. Einfache Aufgaben zum Rationalmachen des Nenners.

Wichtige Formeln im Gebäudeenergiegesetz

0 min, 4 Aufgaben #PQUV

In diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.

Anwendungsaufgaben Körper

13 min, 4 Aufgaben #9599

Zusammengesetzte Aufgaben mit Zylindern, Kegeln und Kugeln bezüglich Volumen und Oberflächen. Kombiniert sind die Aufgaben mit Prozentrechnung, Dreisatz und Dichte.

Klassenarbeit - Lineare Funktionen - Geradengleichungen

28 min, 5 Aufgaben #3810

Originale Klassenarbeit einer 8. Klasse aus Berlin mit 48 erreichbaren Punkten. Vorhanden sind die Zwei-Punkte-Gleichung, Punktprüfung, diverse Verständnisaufgaben zu Steigung und Achsenabschnitt und eine Anwendungsaufgabe.

Studienkolleg Vektoren, SS 2017

126 min, 10 Aufgaben #1818

Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum