Einleitung

Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.

41 Minuten Erklärungen in 13 Aufgaben von Koonys Schule.

Aufgaben

1

$3\sqrt{2} + 4\sqrt{2}$

$9\sqrt{3} - 7\sqrt{3}$

$12\sqrt{11} + 5\sqrt{11}$

$4\sqrt{6} + 3\sqrt{6} - 2\sqrt{6}$

2

$4\sqrt{x} + 3\sqrt{x}$

$14\sqrt{x} - 9\sqrt{x}$

$2\sqrt{a}+3\sqrt{a} - \sqrt{a}$

$3\sqrt{x} - 2\sqrt{x} + 4\sqrt{x}$

3

$4\sqrt{3} + 2\sqrt{5} - 2\sqrt{3} + 8\sqrt{5}$

$6\sqrt{7} + 5\sqrt{2} - 3\sqrt{2} + 8\sqrt{7}$

$4\sqrt{11} + 3\sqrt{13} - \sqrt{11}- 4\sqrt{11}$

$9\sqrt{17} + 3\sqrt{21} - 14\sqrt{21} + 6\sqrt{17}$

4

$5\sqrt{x} + 2\sqrt{y} - 3\sqrt{x} - 4\sqrt{y}$

$5\sqrt{a} + 6\sqrt{b} - 8\sqrt{b} + 7\sqrt{a}$

$8\sqrt{2x} - 7\sqrt{3y} + 5\sqrt{2x} - 3\sqrt{3y}$

$12\sqrt{p} - 3\sqrt{3q} - 5\sqrt{3q} - 6\sqrt{p}$

5

$5\sqrt{a}- ( 7\sqrt{b} + 3\sqrt{a}) - \sqrt{a}$

$5\sqrt{x} - (3\sqrt{x} + \sqrt{y}) - (\sqrt{x} + 2\sqrt{y})$

$-(\sqrt{2a} + 7\sqrt{3b}) - (4\sqrt{2a} - 3\sqrt{3b})$

$\sqrt{x} - (2\sqrt{y} + 3\sqrt{z}) - (\sqrt{x} - \sqrt{y} - \sqrt{z})$

6

$\sqrt{8}\cdot\sqrt{2}$

$\sqrt{12}\cdot\sqrt{3}$

$\sqrt{12,5}\cdot\sqrt{2}$

$\sqrt{18}\cdot\sqrt{2}$

7

$\sqrt{5a}\cdot\sqrt{20a}$

$\sqrt{2a^2}\cdot\sqrt{18a^2}$

$\sqrt{72k} \cdot\sqrt{2k}$

$\sqrt{12x}\cdot\sqrt{3x^3}$

8

$\sqrt{\frac{1}{2}m}\cdot\sqrt{32m}$

$\sqrt{\frac{3}{4}x}\cdot\sqrt{\frac{3}{16}x}$

$\sqrt{0,18a}\cdot\sqrt{2a}$

$\sqrt{20y}\cdot\sqrt{1,8y}$

9

$\frac{\sqrt{72}}{\sqrt{2}}$

$\frac{\sqrt{125}}{\sqrt{5}}$

$\frac{\sqrt{20}}{\sqrt{\frac{4}{5}}}$

$\frac{\sqrt{\frac{1}{3}}}{\sqrt{\frac{3}{4}}}$

10

$\frac{\sqrt{x^3}}{\sqrt{x}}$

$\frac{\sqrt{\frac{a^2}{b}}}{\sqrt{b}}$

$\frac{\sqrt{xy}}{\sqrt{\frac{x}{y}}}$

$\frac{\sqrt{x^2 y^3}}{\sqrt{y}}$

11

$(\sqrt{12} + \sqrt{3})\sqrt{3}$

$\sqrt{2}(\sqrt{18} + \sqrt{32})$

$\sqrt{5}(\sqrt{5} + \sqrt{125})$

$\sqrt{6}(\sqrt{54} + \sqrt{6})$

$(\sqrt{32x} + \sqrt{8x})\sqrt{0,5x}$

$\sqrt{0,2a}\cdot(\sqrt{5a} - \sqrt{80a})$

12

$(3 + \sqrt{5})(3-\sqrt{5})$

$(\sqrt{8} - \sqrt{3})(\sqrt{8} + \sqrt{3})$

$(\sqrt{2} + \sqrt{7})(\sqrt{2} - \sqrt{7})$

$(\sqrt{12} + 3)(\sqrt{12} - 3)$

$(\sqrt{x^3} - \sqrt{2y})(\sqrt{x^3} + \sqrt{2y})$

$(\sqrt{5x^5} + \sqrt{2})(\sqrt{5x^5} - \sqrt{2})$

13

$(\sqrt{a} + \sqrt{b})^2$

$(3 - \sqrt{2})^2$

$(\sqrt{8} + \sqrt{3})^2$

$(\sqrt{5} - \sqrt{b})^2$

$(2\sqrt{a} - 3\sqrt{b})^2$

$(3\sqrt{x} + 2\sqrt{y})^2$

PDF zum Drucken

Weitere Arbeitsblätter

Brüche kürzen und erweitern

64 min, 6 Aufgaben #0607

Das kleine Einmaleins wird hier sehr wichtig: Brüche kürzen und erweitern. Dazu stellt dieses Arbeitsblatt Aufgaben zur Verfügung.

Terme und Gleichungen - Arbeit

0 min, 9 Aufgaben #TUGAA

41 Punkte Klassenarbeit für die 8. Klasse: Umfassendes Arbeitsblatt zu Termen und Gleichungen. Enthält Aufgaben zur Vereinfachung von Termen, Multiplikation, Anwendung der binomischen Formeln, Klammerauflösung, Bestimmung von Lösungsmengen und Sachaufgaben. Perfekt zur Überprüfung und Vertiefung algebraischer Fähigkeiten.

Strahlensätze *

27 min, 3 Aufgaben #4181

Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.

Abschlussarbeit Klasse 9 ohne Taschenrechner

39 min, 8 Aufgaben #2850

Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Klassenarbeit Terme und Gleichungen

27 min, 4 Aufgaben #3749

Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum