Einleitung

Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.

15 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Argumentieren

Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen und wieder zurückgelegt. Simon soll die Wahrscheinlichkeit dafür bestimmen, dass die beiden entnommenen Bausteine unterschiedliche Farben haben.

Er zeichnet das abgebildete Baumdiagramm und folgert: Das Zufallsexperiment hat vier mögliche Ergebnisse, zwei davon erfüllen die gewünschte Bedingung.
Also gilt: $ \mathrm{P(\{gr;rg\})} = \frac{2}{4} = 50% $.


Begründe, dass Simons Überlegung falsch ist.

Ein Bild aus der Koonys Schule Aufgabe 3b85a.

2

Probleme lösen

Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen. Berechne auf der Grundlage zweier unterschiedlicher Annahmen jeweils die Wahrscheinlichkeit dafür, dass mindestens einer der entnommenen Bausteine rot ist.

3

Modellieren

Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen. Charlotte und Marie stellen aufgrund dieser Informationen die Situation jeweils mit einem Baumdiagramm dar.

Ein Bild aus der Koonys Schule Aufgabe ced60.


Erläutere, von welcher Voraussetzung Charlotte und Marie jeweils ausgegangen sind.

4

Darstellungen verwenden

Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen und nicht wieder zurückgelegt. Jakob berechnet die Wahrscheinlichkeit dafür, dass die beiden entnommenen Bausteine unterschiedliche Farben haben:
$$ \frac{3}{5}\cdot\frac{5}{12} + \frac{2}{5}\cdot\frac{5}{8}=2\cdot\frac{1}{4}=50%.$$
Zeichne das zugehörige Baumdiagramm und trage alle in der Rechnung vorkommenden Brüche an der jeweils passenden Stelle ein.

5

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen

Eine Kiste enthält gut gemischt 25 Bausteine, von denen $ k\,(1\le k\le 24) $ gelb und die übrigen rot sind. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen und nicht wieder zurückgelegt. Die Wahrscheinlichkeit dafür, dass die beiden entnommenen Bausteine unterschiedliche Farben haben, wird durch den Term $ p(k) = 2\cdot \frac{k}{25}\cdot\frac{25-k}{24} $ angegeben. Bestimme $ k $ durch Rechnung so, dass $ p(k) = \frac{1}{3} $ gilt.

6

Kommunizieren

Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen und nicht wieder zurückgelegt.

Hannah stellt die Situation durch das abgebildete Baumdiagramm dar. Beschreibe mit Worten, welche Bedeutung die angegebene Wahrscheinlichkeit $ \frac{3}{8} $ hat.

Ein Bild aus der Koonys Schule Aufgabe 0a831.

PDF zum Drucken

Weitere Arbeitsblätter

Dezimalbrüche

85 min, 7 Aufgaben #1010

In verschiedenen Aufgaben werden gebrochene Zahlen zwischen Dezimalzahlen und echten Brüchen hin und her umgewandelt.

Lernkontrolle Potenzen

39 min, 8 Aufgaben #0994

Verschiedene Aufgaben zu Zehnerpotenzen. Zwei Textaufgaben inklusive. Bei den zwei letzten Aufgaben müssen mit Hilfe von Potenzgesetzen Terme vereinfacht werden.

Test über Vorkenntnisse zu ganzrationalen Funktionen

31 min, 4 Aufgaben #1515

Originaler Test mit 40 erreichbaren Punkten.

Kreise - Anwendung

67 min, 6 Aufgaben #8889

Flächen- und Umfangsformel des Kreises müssen in verschiedenen Aufgaben flexibel und mehrschrittig eingesetzt werden.

Klassenarbeit binomische Formeln

33 min, 8 Aufgaben #3132

Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum