Einleitung
Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.
15 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Argumentieren
Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen und wieder zurückgelegt. Simon soll die Wahrscheinlichkeit dafür bestimmen, dass die beiden entnommenen Bausteine unterschiedliche Farben haben.
Er zeichnet das abgebildete Baumdiagramm und folgert: Das Zufallsexperiment hat vier mögliche Ergebnisse, zwei davon erfüllen die gewünschte Bedingung.
Also gilt: $ \mathrm{P(\{gr;rg\})} = \frac{2}{4} = 50% $.
Begründe, dass Simons Überlegung falsch ist.

Probleme lösen
Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen. Berechne auf der Grundlage zweier unterschiedlicher Annahmen jeweils die Wahrscheinlichkeit dafür, dass mindestens einer der entnommenen Bausteine rot ist.
Modellieren
Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen. Charlotte und Marie stellen aufgrund dieser Informationen die Situation jeweils mit einem Baumdiagramm dar.
Erläutere, von welcher Voraussetzung Charlotte und Marie jeweils ausgegangen sind.
Darstellungen verwenden
Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen und nicht wieder zurückgelegt. Jakob berechnet die Wahrscheinlichkeit dafür, dass die beiden entnommenen Bausteine unterschiedliche Farben haben:
$$ \frac{3}{5}\cdot\frac{5}{12} + \frac{2}{5}\cdot\frac{5}{8}=2\cdot\frac{1}{4}=50%.$$
Zeichne das zugehörige Baumdiagramm und trage alle in der Rechnung vorkommenden Brüche an der jeweils passenden Stelle ein.
Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen
Eine Kiste enthält gut gemischt 25 Bausteine, von denen $ k\,(1\le k\le 24) $ gelb und die übrigen rot sind. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen und nicht wieder zurückgelegt. Die Wahrscheinlichkeit dafür, dass die beiden entnommenen Bausteine unterschiedliche Farben haben, wird durch den Term $ p(k) = 2\cdot \frac{k}{25}\cdot\frac{25-k}{24} $ angegeben. Bestimme $ k $ durch Rechnung so, dass $ p(k) = \frac{1}{3} $ gilt.
Kommunizieren
Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen und nicht wieder zurückgelegt.
Hannah stellt die Situation durch das abgebildete Baumdiagramm dar. Beschreibe mit Worten, welche Bedeutung die angegebene Wahrscheinlichkeit $ \frac{3}{8} $ hat.

PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Arbeit - ganzrationale Funktionen
49 min, 3 Aufgaben #1520Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.
Klausur Differentialrechnung
42 min, 5 Aufgaben #1565Originale Klausur mit 38 Punkten. Das Verständnis zu den Begrifflichkeiten des Themas muss gezeigt, ein Grenzwert mit Hilfe des Differentialquotienten berechnen und Potenzfunktionen mit Ableitungsregeln differenziert (abgeleitet) werden. Zusätzlich kommt das Berührproblem und das Tangentenproblem sowie eine Anwendungsaufgabe vor.
Abschlussarbeit Klasse 9 ohne Taschenrechner
39 min, 8 Aufgaben #2850Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
Klausurvorbereitung - Analysis - NRW
15 min, 3 Aufgaben #1580Drei kleine verschiedene Aufgaben zur Differentialrechnung. Man muss Sachen berechnen und begründete Entscheidungen geben. Dafür werden Potenzfunktionen 3. Grades mit Nullstellen, Tangenten, Ableitungen und Verschiebungen von Funktionen benutzt.
Klammern auflösen
56 min, 9 Aufgaben #3337Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.