Einleitung
Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.
15 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Argumentieren
Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen und wieder zurückgelegt. Simon soll die Wahrscheinlichkeit dafür bestimmen, dass die beiden entnommenen Bausteine unterschiedliche Farben haben.
Er zeichnet das abgebildete Baumdiagramm und folgert: Das Zufallsexperiment hat vier mögliche Ergebnisse, zwei davon erfüllen die gewünschte Bedingung.
Also gilt: $ \mathrm{P(\{gr;rg\})} = \frac{2}{4} = 50% $.
Begründe, dass Simons Überlegung falsch ist.

Probleme lösen
Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen. Berechne auf der Grundlage zweier unterschiedlicher Annahmen jeweils die Wahrscheinlichkeit dafür, dass mindestens einer der entnommenen Bausteine rot ist.
Modellieren
Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen. Charlotte und Marie stellen aufgrund dieser Informationen die Situation jeweils mit einem Baumdiagramm dar.
Erläutere, von welcher Voraussetzung Charlotte und Marie jeweils ausgegangen sind.
Darstellungen verwenden
Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen und nicht wieder zurückgelegt. Jakob berechnet die Wahrscheinlichkeit dafür, dass die beiden entnommenen Bausteine unterschiedliche Farben haben:
$$ \frac{3}{5}\cdot\frac{5}{12} + \frac{2}{5}\cdot\frac{5}{8}=2\cdot\frac{1}{4}=50%.$$
Zeichne das zugehörige Baumdiagramm und trage alle in der Rechnung vorkommenden Brüche an der jeweils passenden Stelle ein.
Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen
Eine Kiste enthält gut gemischt 25 Bausteine, von denen $ k\,(1\le k\le 24) $ gelb und die übrigen rot sind. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen und nicht wieder zurückgelegt. Die Wahrscheinlichkeit dafür, dass die beiden entnommenen Bausteine unterschiedliche Farben haben, wird durch den Term $ p(k) = 2\cdot \frac{k}{25}\cdot\frac{25-k}{24} $ angegeben. Bestimme $ k $ durch Rechnung so, dass $ p(k) = \frac{1}{3} $ gilt.
Kommunizieren
Eine Kiste enthält gut gemischt fünfzehn gelbe und zehn rote Bausteine. Zweimal nacheinander wird jeweils ein Baustein zufällig entnommen und nicht wieder zurückgelegt.
Hannah stellt die Situation durch das abgebildete Baumdiagramm dar. Beschreibe mit Worten, welche Bedeutung die angegebene Wahrscheinlichkeit $ \frac{3}{8} $ hat.

PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Ebenen - Übungsaufgaben
52 min, 6 Aufgaben #1933Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.
Klammern auflösen
56 min, 9 Aufgaben #3337Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.
Übungsaufgaben Wahrscheinlichkeitsrechnung
39 min, 5 Aufgaben #1652Übungsaufgaben mit Baumdiagrammen und Abzählverfahren. Mit dabei sind das Werfen von zwei Würfeln, Urnen mit Kugeln (mit bzw. ohne zurücklegen), Kombinatorik im Modehaus und Rosinenbrötchen.
Medikament Abitur GK Berlin 2016
53 min, 7 Aufgaben #1610Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016.
Klassenarbeit Terme und Gleichungen
27 min, 4 Aufgaben #3749Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.