Einleitung

Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium.
Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.

27 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.

Aufgaben

1

Löse die Klammern auf und fasse so weit wie möglich zusammen.

$ -(-4x^2 - 3y + 5a) + (1,6a - x^2) - (0,2y + a) $

$ y(y-1) + 3(2y-1+y^2) - (-4 + 5y^2) $

$ 5ax\cdot 4b^2x\cdot (3a) $

$ (-2z)\cdot (3x)^2 \cdot az $

2

$ (x+2,2a)^2 $

$ (0,5 - 4bc)^2 $

$ (70s + 22s^2t)(70s - 22s^2t) $

$ (2k - 2s)^2\cdot 4k $

3

Löse die Gleichungen.

$ -17x-(27-15-8-5x) = -3x-37 + (67 + x) $

$ 2(9x-13) = 6(-4+2x) - 2 $

$ (8-x)^2 = (x+3)^2 $

$ (x+3)^2 - x(x+7) = (x-10)(x+10) + x(2-x) $

4

Ermittle die gesuchte Zahl, indem Du eine Gleichung aufstellt und löst.

Addiert man zur gesuchten Zahl 6,3, erhält man das Achtfache der gesuchten Zahl, vermindert um 2,1.

Wenn man von der gesuchten Zahl 7 subtrahiert, das Ergebnis vervierfacht und anschließend 42 addiert, erhält man 4.

PDF zum Drucken

Weitere Arbeitsblätter

Kathetensatz und Höhensatz

37 min, 6 Aufgaben #0045

Eine Hälfte beschäftigt sich mit Berechnungen am rechtwinkligen Dreieck. Die andere Hälfte sind schwierigere Textaufgaben.

Klassenarbeit binomische Formeln

33 min, 8 Aufgaben #3132

Klassenarbeit einer 8. Klasse in Berlin aus dem Jahre 2015.

Pythagoras - Anwendungen

49 min, 6 Aufgaben #0040

Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.

Kegel, Pyramide, Kugel

27 min, 5 Aufgaben #9540

Die Formeln zur Oberflächen- und Volumenberechnung bei Kegeln, Pyramiden und Kugel kommen zur Anwendung. Es kommt dabei u.a. auch der Dreisatz sowie die Dichte-Formel zur Anwendung.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum