Einleitung

Eine Einführung in quadratische Funktionen.
Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen.
Ausblick könnte die quadratische Ergänzung sein.

53 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde so gut du kannst.

$x$-3-2-10123
$ f(x)=x^2 $



$x$-3-2-10123
$ g(x)=x^2+1 $

2

Zeichne die Graphen der Funktionen $ f(x) = 3x^2 $ und $ g(x) = (x+1)^2 $ im Intervall [-3; 3] in ein Koordinatensystem. Lege zunächst eine Wertetabelle an.

3

Zeichne die Graphen der Funktionen in ein Koordinatensystem im Intervall [-4; 4].

$ f(x)=2(x+1)^2 + 1 $

$ g(x) = 2(x-2)^2 - 2 $

$ h(x) = (x+\frac{1}{2})^2 - \frac{1}{2} $

4

Stelle die Scheitelpunktsform mit Hilfe des Streckungsfaktors $ a $ und dem Scheitelpunkt auf.

$ a = 2 $,
$ \EPUNKT{S}{1}{3} $

$ a = -3 $,
$ \EPUNKT{S}{-1}{-2} $

$ a = -\frac{1}{2} $,
$ \EPUNKT{S}{1}{-3} $

$ a = 1 $,
$ \EPUNKT{S}{0}{0} $

5

Bestimme die Funktionsgleichungen der eingezeichneten Graphen.

6

Überführe von der Scheitelpunktsform in die allgemeine Form.

$ f(x) = (x+3)^2 + 4 $

$ f(x) = 2(x-4)^2 - 3 $

$ f(x) = -(x+1)^2 + 1 $

$ f(x) = -\frac{1}{3}(x-\frac{1}{2})^2 - \frac{7}{12}$

PDF zum Drucken

Weitere Arbeitsblätter

Weidezelt Abitur GK Berlin 2016

64 min, 6 Aufgaben #1611

Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.

Ableitungsfunktion und ihre Anwendung

92 min, 12 Aufgaben #1590

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

Mathematische Kompetenzen - Zufall

15 min, 6 Aufgaben #0008

Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.

Glücksrad mit Urne - Übungsaufgabe Stochastik LK

21 min, 6 Aufgaben #1710

Eine Übungsaufgabe, die Urne und Glücksrad kombiniert. Nebst Baumdiagrammen, Bernoulli und der summierten Binomialverteilung werden auch Gewinnerwartung und Prozentrechnung beim Kreis benötigt.

Gleichungen in Texten

54 min, 11 Aufgaben #1337

Zwei Gleichungen aufstellen und dann lösen. Immer. Zum Teil sehr knifflig!

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum