Einleitung

Eine Einführung in quadratische Funktionen.
Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen.
Ausblick könnte die quadratische Ergänzung sein.

53 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde so gut du kannst.

$x$-3-2-10123
$ f(x)=x^2 $



$x$-3-2-10123
$ g(x)=x^2+1 $

2

Zeichne die Graphen der Funktionen $ f(x) = 3x^2 $ und $ g(x) = (x+1)^2 $ im Intervall [-3; 3] in ein Koordinatensystem. Lege zunächst eine Wertetabelle an.

3

Zeichne die Graphen der Funktionen in ein Koordinatensystem im Intervall [-4; 4].

$ f(x)=2(x+1)^2 + 1 $

$ g(x) = 2(x-2)^2 - 2 $

$ h(x) = (x+\frac{1}{2})^2 - \frac{1}{2} $

4

Stelle die Scheitelpunktsform mit Hilfe des Streckungsfaktors $ a $ und dem Scheitelpunkt auf.

$ a = 2 $,
$ \EPUNKT{S}{1}{3} $

$ a = -3 $,
$ \EPUNKT{S}{-1}{-2} $

$ a = -\frac{1}{2} $,
$ \EPUNKT{S}{1}{-3} $

$ a = 1 $,
$ \EPUNKT{S}{0}{0} $

5

Bestimme die Funktionsgleichungen der eingezeichneten Graphen.

Ein Bild aus der Koonys Schule Aufgabe a369c.

Ein Bild aus der Koonys Schule Aufgabe a369c.

6

Überführe von der Scheitelpunktsform in die allgemeine Form.

$ f(x) = (x+3)^2 + 4 $

$ f(x) = 2(x-4)^2 - 3 $

$ f(x) = -(x+1)^2 + 1 $

$ f(x) = -\frac{1}{3}(x-\frac{1}{2})^2 - \frac{7}{12}$

PDF zum Drucken

Weitere Arbeitsblätter

Arbeit - quadratische Funktionen

39 min, 4 Aufgaben #0069

Eine originale Arbeit mit 46 erreichbaren Punkten zum Thema quadratische Funktionen. Mit dabei: Linearfaktor, Satz von Vieta, Scheitelpunktsform, Optimierungsproblem und Imbiss Bronko.

Anwendungsaufgaben Körper

13 min, 4 Aufgaben #9599

Zusammengesetzte Aufgaben mit Zylindern, Kegeln und Kugeln bezüglich Volumen und Oberflächen. Kombiniert sind die Aufgaben mit Prozentrechnung, Dreisatz und Dichte.

Weidezelt Abitur GK Berlin 2016

64 min, 6 Aufgaben #1611

Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.

Glücksrad mit Urne - Übungsaufgabe Stochastik LK

21 min, 6 Aufgaben #1710

Eine Übungsaufgabe, die Urne und Glücksrad kombiniert. Nebst Baumdiagrammen, Bernoulli und der summierten Binomialverteilung werden auch Gewinnerwartung und Prozentrechnung beim Kreis benötigt.

Sinus - Kosinus - Tangens

41 min, 6 Aufgaben #7000

Sinus, Kosinus und Tangens von leicht bis schwer. Zunächst Aufgaben mit den Gleichungen und all ihren Varianten. Danach Standard-Aufgaben an rechtwinkligen Dreiecken und die zweite Hälfte sind Textaufgaben bei denen das gleiche noch einmal drankommt mit dem gewissen Etwas, das anspruchsvolle Aufgaben ausmacht.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum