Einleitung
Eine Einführung in quadratische Funktionen.
Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen.
Ausblick könnte die quadratische Ergänzung sein.
53 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde so gut du kannst.
| $x$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| $ f(x)=x^2 $ |
| $x$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| $ g(x)=x^2+1 $ |
Zeichne die Graphen der Funktionen $ f(x) = 3x^2 $ und $ g(x) = (x+1)^2 $ im Intervall [-3; 3] in ein Koordinatensystem. Lege zunächst eine Wertetabelle an.
Zeichne die Graphen der Funktionen in ein Koordinatensystem im Intervall [-4; 4].
$ f(x)=2(x+1)^2 + 1 $
$ g(x) = 2(x-2)^2 - 2 $
$ h(x) = (x+\frac{1}{2})^2 - \frac{1}{2} $
Stelle die Scheitelpunktsform mit Hilfe des Streckungsfaktors $ a $ und dem Scheitelpunkt auf.
$ a = 2 $,
$ \EPUNKT{S}{1}{3} $
$ a = -3 $,
$ \EPUNKT{S}{-1}{-2} $
$ a = -\frac{1}{2} $,
$ \EPUNKT{S}{1}{-3} $
$ a = 1 $,
$ \EPUNKT{S}{0}{0} $
Überführe von der Scheitelpunktsform in die allgemeine Form.
$ f(x) = (x+3)^2 + 4 $
$ f(x) = 2(x-4)^2 - 3 $
$ f(x) = -(x+1)^2 + 1 $
$ f(x) = -\frac{1}{3}(x-\frac{1}{2})^2 - \frac{7}{12}$
Weitere Arbeitsblätter
Polynomdivision und mittlere Änderungsrate
35 min, 6 Aufgaben #1551Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
Flächensätze - Vorwissen I
31 min, 7 Aufgaben #0037Verschiedene grundlegende Aufgaben zu Flächensätze. Der Umgang mit dem für das Thema wichtigen Gleichungen, Flächen- und Winkelberechnungen, sowie erste einfache Aufgaben mit dem Satz des Pythagoras kommen dran.
Glücksrad mit Urne - Übungsaufgabe Stochastik LK
21 min, 6 Aufgaben #1710Eine Übungsaufgabe, die Urne und Glücksrad kombiniert. Nebst Baumdiagrammen, Bernoulli und der summierten Binomialverteilung werden auch Gewinnerwartung und Prozentrechnung beim Kreis benötigt.
Kreise - Anwendung
59 min, 5 Aufgaben #8890In verschiedenen Anwendungsaufgaben müssen die Kreisformeln genutzt werden. Umstellen der Formeln, Kreisausschnitte, Prozent- und Geschwindigkeitsrechnung müssen darüber hinaus angewendet werden.
Vermischte Übungen MSA
36 min, 6 Aufgaben #1290Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.

