Einleitung

Eine Einführung in quadratische Funktionen.
Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen.
Ausblick könnte die quadratische Ergänzung sein.

53 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde so gut du kannst.

$x$-3-2-10123
$ f(x)=x^2 $



$x$-3-2-10123
$ g(x)=x^2+1 $

2

Zeichne die Graphen der Funktionen $ f(x) = 3x^2 $ und $ g(x) = (x+1)^2 $ im Intervall [-3; 3] in ein Koordinatensystem. Lege zunächst eine Wertetabelle an.

3

Zeichne die Graphen der Funktionen in ein Koordinatensystem im Intervall [-4; 4].

$ f(x)=2(x+1)^2 + 1 $

$ g(x) = 2(x-2)^2 - 2 $

$ h(x) = (x+\frac{1}{2})^2 - \frac{1}{2} $

4

Stelle die Scheitelpunktsform mit Hilfe des Streckungsfaktors $ a $ und dem Scheitelpunkt auf.

$ a = 2 $,
$ \EPUNKT{S}{1}{3} $

$ a = -3 $,
$ \EPUNKT{S}{-1}{-2} $

$ a = -\frac{1}{2} $,
$ \EPUNKT{S}{1}{-3} $

$ a = 1 $,
$ \EPUNKT{S}{0}{0} $

5

Bestimme die Funktionsgleichungen der eingezeichneten Graphen.

Ein Bild aus der Koonys Schule Aufgabe a369c.

Ein Bild aus der Koonys Schule Aufgabe a369c.

6

Überführe von der Scheitelpunktsform in die allgemeine Form.

$ f(x) = (x+3)^2 + 4 $

$ f(x) = 2(x-4)^2 - 3 $

$ f(x) = -(x+1)^2 + 1 $

$ f(x) = -\frac{1}{3}(x-\frac{1}{2})^2 - \frac{7}{12}$

PDF zum Drucken

Weitere Arbeitsblätter

Abzählverfahren

54 min, 7 Aufgaben #1650

Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.

Stammfunktionen und Flächeninhalte

76 min, 8 Aufgaben #8010

Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)

Klassenarbeit - Rechnen mit Wurzeln

27 min, 9 Aufgaben #0993

Originale Arbeit einer 9. Klasse mit 60 möglichen Punkten ohne Taschenrechner zur Wurzelrechnung.

Weidezelt Abitur GK Berlin 2016

64 min, 6 Aufgaben #1611

Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016. Neben Nullstellen, Extrempunkten und Wendepunkten sind außerdem dabei: Extremalproblem, Rekonstruktion einer quadratischen Funktion und Flächenberechnung.

Textaufgaben mit mehreren Unbekannten

46 min, 11 Aufgaben #1336

Elf Textaufgaben bei denen immer zunächst zwei Gleichungen mit zwei Unbekannten aufgestellt und dann gelöst werden müssen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum