Einleitung
Eine Einführung in quadratische Funktionen.
Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen.
Ausblick könnte die quadratische Ergänzung sein.
53 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde so gut du kannst.
| $x$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| $ f(x)=x^2 $ |
| $x$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| $ g(x)=x^2+1 $ |
Zeichne die Graphen der Funktionen $ f(x) = 3x^2 $ und $ g(x) = (x+1)^2 $ im Intervall [-3; 3] in ein Koordinatensystem. Lege zunächst eine Wertetabelle an.
Zeichne die Graphen der Funktionen in ein Koordinatensystem im Intervall [-4; 4].
$ f(x)=2(x+1)^2 + 1 $
$ g(x) = 2(x-2)^2 - 2 $
$ h(x) = (x+\frac{1}{2})^2 - \frac{1}{2} $
Stelle die Scheitelpunktsform mit Hilfe des Streckungsfaktors $ a $ und dem Scheitelpunkt auf.
$ a = 2 $,
$ \EPUNKT{S}{1}{3} $
$ a = -3 $,
$ \EPUNKT{S}{-1}{-2} $
$ a = -\frac{1}{2} $,
$ \EPUNKT{S}{1}{-3} $
$ a = 1 $,
$ \EPUNKT{S}{0}{0} $
Überführe von der Scheitelpunktsform in die allgemeine Form.
$ f(x) = (x+3)^2 + 4 $
$ f(x) = 2(x-4)^2 - 3 $
$ f(x) = -(x+1)^2 + 1 $
$ f(x) = -\frac{1}{3}(x-\frac{1}{2})^2 - \frac{7}{12}$
Weitere Arbeitsblätter
Klammern auflösen
56 min, 9 Aufgaben #3337Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.
Abschlussarbeit Klasse 9 ohne Taschenrechner
39 min, 8 Aufgaben #2850Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
Extremwertaufgaben
80 min, 8 Aufgaben #1597Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
Klassenarbeit - Wurzelgesetze und Potenzgesetze
24 min, 6 Aufgaben #0995Originale Arbeit mit 36 erreichbaren Punkten.
Lernkontrolle Wahrscheinlichkeitsrechnung
36 min, 4 Aufgaben #7392Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.

