Einleitung
Eine Einführung in quadratische Funktionen.
Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen.
Ausblick könnte die quadratische Ergänzung sein.
53 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde so gut du kannst.
| $x$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| $ f(x)=x^2 $ |
| $x$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| $ g(x)=x^2+1 $ |
Zeichne die Graphen der Funktionen $ f(x) = 3x^2 $ und $ g(x) = (x+1)^2 $ im Intervall [-3; 3] in ein Koordinatensystem. Lege zunächst eine Wertetabelle an.
Zeichne die Graphen der Funktionen in ein Koordinatensystem im Intervall [-4; 4].
$ f(x)=2(x+1)^2 + 1 $
$ g(x) = 2(x-2)^2 - 2 $
$ h(x) = (x+\frac{1}{2})^2 - \frac{1}{2} $
Stelle die Scheitelpunktsform mit Hilfe des Streckungsfaktors $ a $ und dem Scheitelpunkt auf.
$ a = 2 $,
$ \EPUNKT{S}{1}{3} $
$ a = -3 $,
$ \EPUNKT{S}{-1}{-2} $
$ a = -\frac{1}{2} $,
$ \EPUNKT{S}{1}{-3} $
$ a = 1 $,
$ \EPUNKT{S}{0}{0} $
Überführe von der Scheitelpunktsform in die allgemeine Form.
$ f(x) = (x+3)^2 + 4 $
$ f(x) = 2(x-4)^2 - 3 $
$ f(x) = -(x+1)^2 + 1 $
$ f(x) = -\frac{1}{3}(x-\frac{1}{2})^2 - \frac{7}{12}$
Weitere Arbeitsblätter
Lernkontrolle Wahrscheinlichkeitsrechnung
36 min, 4 Aufgaben #7392Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.
Terme und Gleichungen in Texten
57 min, 10 Aufgaben #1300Das Arbeitsblatt besteht aus 3 Teilen. Aufgestellt werden müssen Terme (1), einfache Gleichungen (2), schwierige Gleichungen (3).
Wochenübung - besondere quadratische Gleichungen
89 min, 6 Aufgaben #0065Für sechs Tage gibt es täglich 4 Aufgaben. Eine Bruchgleichung, eine biquadratische Gleichung, eine Gleichung 3. Grades ohne Absolutglied und eine zum Knobeln.
Bernoulli-Ketten Anwendung
37 min, 4 Aufgaben #1701Anwendungsaufgaben zu Bernoulli-Ketten. Die ersten zwei Aufgaben fragen die grundlegenden Berechnungen ab. Die dritte ist vom Typ mindestens-mindestens und die vierte zeichnet sich durch eine äußert schwierige Aufgabenstellung aus. Ein kühler Kopf ist hier gefragt.
Klammern auflösen
51 min, 5 Aufgaben #3335Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz). Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.

