Einleitung

Eine Einführung in quadratische Funktionen.
Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen.
Ausblick könnte die quadratische Ergänzung sein.

53 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde so gut du kannst.

$x$-3-2-10123
$ f(x)=x^2 $



$x$-3-2-10123
$ g(x)=x^2+1 $

2

Zeichne die Graphen der Funktionen $ f(x) = 3x^2 $ und $ g(x) = (x+1)^2 $ im Intervall [-3; 3] in ein Koordinatensystem. Lege zunächst eine Wertetabelle an.

3

Zeichne die Graphen der Funktionen in ein Koordinatensystem im Intervall [-4; 4].

$ f(x)=2(x+1)^2 + 1 $

$ g(x) = 2(x-2)^2 - 2 $

$ h(x) = (x+\frac{1}{2})^2 - \frac{1}{2} $

4

Stelle die Scheitelpunktsform mit Hilfe des Streckungsfaktors $ a $ und dem Scheitelpunkt auf.

$ a = 2 $,
$ \EPUNKT{S}{1}{3} $

$ a = -3 $,
$ \EPUNKT{S}{-1}{-2} $

$ a = -\frac{1}{2} $,
$ \EPUNKT{S}{1}{-3} $

$ a = 1 $,
$ \EPUNKT{S}{0}{0} $

5

Bestimme die Funktionsgleichungen der eingezeichneten Graphen.

6

Überführe von der Scheitelpunktsform in die allgemeine Form.

$ f(x) = (x+3)^2 + 4 $

$ f(x) = 2(x-4)^2 - 3 $

$ f(x) = -(x+1)^2 + 1 $

$ f(x) = -\frac{1}{3}(x-\frac{1}{2})^2 - \frac{7}{12}$

PDF zum Drucken

Weitere Arbeitsblätter

Übungen zu kombinatorischen Abzählverfahren

29 min, 8 Aufgaben #1648

Ob mit oder ohne Reihenfolge und mit oder ohne Wiederholung: die Frage, die sich stellt, ist immer die gleiche: wie viele Möglichkeiten gibt es? Bei den Aufgaben kommt man noch häufig durch Abzählen zur Lösung.

Lineare Funktionen

54 min, 6 Aufgaben #3800

Dieses Arbeitsblatt führt an lineare Funktionen heran. Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.

Klammern auflösen

51 min, 5 Aufgaben #3335

Aufgaben zum Vereinfachen von Termen mit Klammern. Zunächst Terme mit Minusklammern, dann welche mit doppelten Klammern (doppeltes Distributivgesetz). Am Ende, so ganz nebenbei, die binomischen Formeln und der ganze Spaß rückwärts: das Ausklammern.

Lineare Gleichungen

58 min, 5 Aufgaben #3738

Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer. Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.

Lineare Gleichungssysteme lösen

62 min, 7 Aufgaben #3820

Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren. Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen. Am Ende noch Übungen bei denen auch Brüche vorkommen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum