Einleitung
Eine Einführung in quadratische Funktionen.
Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen.
Ausblick könnte die quadratische Ergänzung sein.
53 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Fülle die Wertetabellen aus, zeichne die Punkte in ein Koordinatensystem und verbinde so gut du kannst.
$x$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
$ f(x)=x^2 $ |
$x$ | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
$ g(x)=x^2+1 $ |
Zeichne die Graphen der Funktionen $ f(x) = 3x^2 $ und $ g(x) = (x+1)^2 $ im Intervall [-3; 3] in ein Koordinatensystem. Lege zunächst eine Wertetabelle an.
Zeichne die Graphen der Funktionen in ein Koordinatensystem im Intervall [-4; 4].
$ f(x)=2(x+1)^2 + 1 $
$ g(x) = 2(x-2)^2 - 2 $
$ h(x) = (x+\frac{1}{2})^2 - \frac{1}{2} $
Stelle die Scheitelpunktsform mit Hilfe des Streckungsfaktors $ a $ und dem Scheitelpunkt auf.
$ a = 2 $,
$ \EPUNKT{S}{1}{3} $
$ a = -3 $,
$ \EPUNKT{S}{-1}{-2} $
$ a = -\frac{1}{2} $,
$ \EPUNKT{S}{1}{-3} $
$ a = 1 $,
$ \EPUNKT{S}{0}{0} $
Überführe von der Scheitelpunktsform in die allgemeine Form.
$ f(x) = (x+3)^2 + 4 $
$ f(x) = 2(x-4)^2 - 3 $
$ f(x) = -(x+1)^2 + 1 $
$ f(x) = -\frac{1}{3}(x-\frac{1}{2})^2 - \frac{7}{12}$
Weitere Arbeitsblätter
Studienkolleg Vektoren, SS 2017
126 min, 10 Aufgaben #1818Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.
Medikament Abitur GK Berlin 2016
53 min, 7 Aufgaben #1610Abituraufgabe zur Analysis für den Grundkurs mit 40 erreichbaren Bewertungseinheiten aus Berlin 2016.
Polynomdivision und mittlere Änderungsrate
35 min, 6 Aufgaben #1551Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
Anwendungsaufgaben Körper
13 min, 4 Aufgaben #9599Zusammengesetzte Aufgaben mit Zylindern, Kegeln und Kugeln bezüglich Volumen und Oberflächen. Kombiniert sind die Aufgaben mit Prozentrechnung, Dreisatz und Dichte.
Wurzelterme vereinfachen ohne Taschenrechner
41 min, 13 Aufgaben #0990Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.