Einleitung
Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.
74 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.
Aufgaben
Löse die reinquadratischen Gleichungen.
$x^2 = 144$
$4x^2 = 1024$
$x^2+45 = 155,25$
$3x^2-7 = -20$
$5-x^2 = 5$
$7x^2+34=-3x^2+844$
Löse die Gleichungen mit Hilfe der Scheitelpunktsform.
$(x+5)^2 = 64$
$(x-3)^2+2 = 160,76$
$x^2+12x = 3,69$
$x^2+8x+16 = 196$
$x^2-3,6x=0$
$x^2-14x+49 = -50,41$
$3x^2 - 16x=101,97+5x$
$x^2+4x-3=5-3x$
Ermittle die Lösungen mit der pq-Formel.
$x^2-17x+60 = 0$
$2x^2+8x-4,2 = 0$
$x^2+7x-6 = 5-x$
$(x-12)^2 + 22 = 2354$
$x^2-5x+9 = 2x-3$
$4x^2 + 8x-3 = -2x-6x^2+204$
Das Quadrat einer Zahl, vermehrt um das Vierfache dieser Zahl ergibt 21. Für welche Zahlen gilt das?
In einem Rechteck ist die Diagonale d = 20cm. Eine Rechteckseite ist 4cm länger als die andere. Berechne die Länge der Seiten.
Verlängert man alle Seiten eines Quadrates um 4cm, so erhält man die neue Fläche von $1600\mathrm{cm}^2$. Gib die Seitenlängen der beiden Quadrate an.
Verkürzt man eine Seite eines Quadrates um 5cm und verlängert gleichzeitig die andere Seite um 10cm, so erhält man ein Rechteck mit dem Flächeninhalt $154\mathrm{cm}^2$. Berechne die Seitenlängen von Quadrat und Rechteck.
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Wochenübung - besondere quadratische Gleichungen
89 min, 6 Aufgaben #0065Für sechs Tage gibt es täglich 4 Aufgaben. Eine Bruchgleichung, eine biquadratische Gleichung, eine Gleichung 3. Grades ohne Absolutglied und eine zum Knobeln.
Kreise - Anwendung
67 min, 6 Aufgaben #8889Flächen- und Umfangsformel des Kreises müssen in verschiedenen Aufgaben flexibel und mehrschrittig eingesetzt werden.
Smartphones Abitur GK Berlin 2016
44 min, 6 Aufgaben #1991Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Extremwertaufgaben
80 min, 8 Aufgaben #1597Acht verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es mit einem Schiff, in einer Spielzeugfabrik, auf einer Wiese oder als Motorradfahrer: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.
Berechnungen an Körpern
62 min, 6 Aufgaben #9598Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.