Einleitung

Verschiedene Übungen zu Ebenen.
Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.

52 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Zeichne die folgenden Ebenen mit Hilfe ihrer Spurgeraden in ein kartesisches Koordinatensystem ein:

E: $3x_1 + 4x_2 + 3x_3 = 12$

E: $2x_1 + 4x_2 = 8$

E: $x_2 = 3$

2

Bestimme jeweils eine Koordinatengleichung der Ebene E.

$\RPUNKT{A}{2}{2}{2},\, \RPUNKT{B}{4}{1}{3},\,\RPUNKT{C}{8}{4}{5}$

$\RPUNKT{A}{4}{1}{2},\, \mathrm{g:}\,\, \vec{x} = \RVEKTOR{c}{3}{5}{7} + t\cdot \RVEKTOR{c}{1}{1}{1}$

$\mathrm{g:}\,\,\vec{x} = \RVEKTOR{c}{1}{0}{2} + s\cdot \RVEKTOR{c}{3}{1}{2}$, $\mathrm{h:}\,\,\vec{x} = \RVEKTOR{c}{3}{3}{7} + t\cdot \RVEKTOR{c}{2}{1}{3}$

3

$\mathrm{g:}\,\,\vec{x} = \RVEKTOR{c}{1}{0}{2} + s\cdot \RVEKTOR{c}{3}{1}{2}$, $\mathrm{h:}\,\,\vec{x} = \RVEKTOR{c}{4}{1}{1} + t\cdot \RVEKTOR{c}{6}{2}{4}$

Die Ebene E ist Spiegelebene zwischen $\RPUNKT{A}{1}{4}{7}$ und $\RPUNKT{A^*}{3}{2}{3}$.

Die Ebene E enthält die Gerade $\vec{x} = \RVEKTOR{c}{3}{1}{2} + s \cdot \RVEKTOR{c}{2}{0}{-1}$ und ist orthogonal zur Ebene $\mathrm{F:} - x_1 + x_2 + 2x_3 + 2 = 0$.

4

Bestimme eine Gleichung der Schnittgeraden der Ebenen $\mathrm{E:} x_1 - x_2 + 2x_3 = 7$ und $\mathrm{F:} -x_1 + x_2 + 2x_3 + 2 = 0$.

5

Berechne den Abstand des Punktes $\RPUNKT{R}{6}{9}{4}$ von der Ebene
$\mathrm{E:}\left[\vec{x} - \RVEKTOR{c}{7}{5}{2}\right]\cdot \RVEKTOR{c}{2}{2}{1} = 0$.

6

Gegeben seien die Gerade g und die Ebene E durch $\mathrm{g:}\,\vec{x} = \vec{a} + t\cdot \vec{r},\,\,t\in \RR $ und $\mathrm{E:}\,\left(\vec{x} - \vec{b}\right)\cdot \vec{n} = 0$.

Welche geometrische Bedeutung haben die Vektoren $\vec{a}$, $\vec{b}$, $\vec{r}$, $\vec{n}$ und $\left(\vec{x} - \vec{b}\right)$?

Welche Beziehung muss zwischen den Vektoren gelten, damit gilt


g ist parallel zu E

g ist orthogonal zu E

g liegt in E

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur analytische Geometrie


Weitere Arbeitsblätter

Kepler und Gravitation

81 min, 8 Aufgaben #6030

Zwei Massen ziehen sich, je nach ihrer Entfernung voneinander, an. Eine Formel um auszurechnen wie stark gibt es natürlich auch. Damit einhergehend gibt es Aufgaben, die gelöst werden können. Zum Beispiel Geschwindigkeiten von Raketen und Satelliten oder die Masse der Sonne.

Strahlensätze **

54 min, 6 Aufgaben #4182

Drei Schenkel, verdrehte Skizzen, Erbsen und der Mond sowie Bergspitzen. Das Prinzip ist das Gleiche, aber die Schwierigkeit ist doch um einiges größer als sonst. Das nächste Level an Strahlensatzaufgaben sozusagen.

Diagnosetest konstruieren und argumentieren

36 min, 5 Aufgaben #4025

Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.

Vermischte Übungen MSA

36 min, 6 Aufgaben #1290

Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.

Wurzelterme vereinfachen ohne Taschenrechner

41 min, 13 Aufgaben #0990

Viele verschiedene Aufgaben zum Zusammenfassen von Wurzeltermen. Dabei werden neben den Wurzelgesetzen auch binomische Formeln benötigt.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum