Einleitung
Verschiedene Übungen zu Ebenen.
Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.
52 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Zeichne die folgenden Ebenen mit Hilfe ihrer Spurgeraden in ein kartesisches Koordinatensystem ein:
E: $3x_1 + 4x_2 + 3x_3 = 12$
E: $2x_1 + 4x_2 = 8$
E: $x_2 = 3$
Bestimme jeweils eine Koordinatengleichung der Ebene E.
$\RPUNKT{A}{2}{2}{2},\, \RPUNKT{B}{4}{1}{3},\,\RPUNKT{C}{8}{4}{5}$
$\RPUNKT{A}{4}{1}{2},\, \mathrm{g:}\,\, \vec{x} = \RVEKTOR{c}{3}{5}{7} + t\cdot \RVEKTOR{c}{1}{1}{1}$
$\mathrm{g:}\,\,\vec{x} = \RVEKTOR{c}{1}{0}{2} + s\cdot \RVEKTOR{c}{3}{1}{2}$, $\mathrm{h:}\,\,\vec{x} = \RVEKTOR{c}{3}{3}{7} + t\cdot \RVEKTOR{c}{2}{1}{3}$
$\mathrm{g:}\,\,\vec{x} = \RVEKTOR{c}{1}{0}{2} + s\cdot \RVEKTOR{c}{3}{1}{2}$, $\mathrm{h:}\,\,\vec{x} = \RVEKTOR{c}{4}{1}{1} + t\cdot \RVEKTOR{c}{6}{2}{4}$
Die Ebene E ist Spiegelebene zwischen $\RPUNKT{A}{1}{4}{7}$ und $\RPUNKT{A^*}{3}{2}{3}$.
Die Ebene E enthält die Gerade $\vec{x} = \RVEKTOR{c}{3}{1}{2} + s \cdot \RVEKTOR{c}{2}{0}{-1}$ und ist orthogonal zur Ebene $\mathrm{F:} - x_1 + x_2 + 2x_3 + 2 = 0$.
Bestimme eine Gleichung der Schnittgeraden der Ebenen $\mathrm{E:} x_1 - x_2 + 2x_3 = 7$ und $\mathrm{F:} -x_1 + x_2 + 2x_3 + 2 = 0$.
Berechne den Abstand des Punktes $\RPUNKT{R}{6}{9}{4}$ von der Ebene
$\mathrm{E:}\left[\vec{x} - \RVEKTOR{c}{7}{5}{2}\right]\cdot \RVEKTOR{c}{2}{2}{1} = 0$.
Gegeben seien die Gerade g und die Ebene E durch $\mathrm{g:}\,\vec{x} = \vec{a} + t\cdot \vec{r},\,\,t\in \RR $ und $\mathrm{E:}\,\left(\vec{x} - \vec{b}\right)\cdot \vec{n} = 0$.
Welche geometrische Bedeutung haben die Vektoren $\vec{a}$, $\vec{b}$, $\vec{r}$, $\vec{n}$ und $\left(\vec{x} - \vec{b}\right)$?
Welche Beziehung muss zwischen den Vektoren gelten, damit gilt
g ist parallel zu E
g ist orthogonal zu E
g liegt in E
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Stammfunktionen und Flächeninhalte
76 min, 8 Aufgaben #8010Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)
Wichtige Formeln im Gebäudeenergiegesetz
0 min, 4 Aufgaben #PQUVIn diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.
Strahlensätze *
27 min, 3 Aufgaben #4181Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.
Smartphones Abitur GK Berlin 2016
44 min, 6 Aufgaben #1991Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Flächensätze - Vorwissen I
31 min, 7 Aufgaben #0037Verschiedene grundlegende Aufgaben zu Flächensätze. Der Umgang mit dem für das Thema wichtigen Gleichungen, Flächen- und Winkelberechnungen, sowie erste einfache Aufgaben mit dem Satz des Pythagoras kommen dran.