Einleitung

Verschiedene Übungen zu Ebenen.
Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.

52 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Zeichne die folgenden Ebenen mit Hilfe ihrer Spurgeraden in ein kartesisches Koordinatensystem ein:

E: $3x_1 + 4x_2 + 3x_3 = 12$

E: $2x_1 + 4x_2 = 8$

E: $x_2 = 3$

2

Bestimme jeweils eine Koordinatengleichung der Ebene E.

$\RPUNKT{A}{2}{2}{2},\, \RPUNKT{B}{4}{1}{3},\,\RPUNKT{C}{8}{4}{5}$

$\RPUNKT{A}{4}{1}{2},\, \mathrm{g:}\,\, \vec{x} = \RVEKTOR{c}{3}{5}{7} + t\cdot \RVEKTOR{c}{1}{1}{1}$

$\mathrm{g:}\,\,\vec{x} = \RVEKTOR{c}{1}{0}{2} + s\cdot \RVEKTOR{c}{3}{1}{2}$, $\mathrm{h:}\,\,\vec{x} = \RVEKTOR{c}{3}{3}{7} + t\cdot \RVEKTOR{c}{2}{1}{3}$

3

$\mathrm{g:}\,\,\vec{x} = \RVEKTOR{c}{1}{0}{2} + s\cdot \RVEKTOR{c}{3}{1}{2}$, $\mathrm{h:}\,\,\vec{x} = \RVEKTOR{c}{4}{1}{1} + t\cdot \RVEKTOR{c}{6}{2}{4}$

Die Ebene E ist Spiegelebene zwischen $\RPUNKT{A}{1}{4}{7}$ und $\RPUNKT{A^*}{3}{2}{3}$.

Die Ebene E enthält die Gerade $\vec{x} = \RVEKTOR{c}{3}{1}{2} + s \cdot \RVEKTOR{c}{2}{0}{-1}$ und ist orthogonal zur Ebene $\mathrm{F:} - x_1 + x_2 + 2x_3 + 2 = 0$.

4

Bestimme eine Gleichung der Schnittgeraden der Ebenen $\mathrm{E:} x_1 - x_2 + 2x_3 = 7$ und $\mathrm{F:} -x_1 + x_2 + 2x_3 + 2 = 0$.

5

Berechne den Abstand des Punktes $\RPUNKT{R}{6}{9}{4}$ von der Ebene
$\mathrm{E:}\left[\vec{x} - \RVEKTOR{c}{7}{5}{2}\right]\cdot \RVEKTOR{c}{2}{2}{1} = 0$.

6

Gegeben seien die Gerade g und die Ebene E durch $\mathrm{g:}\,\vec{x} = \vec{a} + t\cdot \vec{r},\,\,t\in \RR $ und $\mathrm{E:}\,\left(\vec{x} - \vec{b}\right)\cdot \vec{n} = 0$.

Welche geometrische Bedeutung haben die Vektoren $\vec{a}$, $\vec{b}$, $\vec{r}$, $\vec{n}$ und $\left(\vec{x} - \vec{b}\right)$?

Welche Beziehung muss zwischen den Vektoren gelten, damit gilt


g ist parallel zu E

g ist orthogonal zu E

g liegt in E

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur analytische Geometrie


Weitere Arbeitsblätter

Wichtige Formeln im Gebäudeenergiegesetz

0 min, 4 Aufgaben #PQUV

In diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.

Klassenarbeit Terme und Gleichungen

27 min, 4 Aufgaben #3749

Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.

Felder und Kreise - GK Klausur Physik

40 min, 3 Aufgaben #6123

Originale Physik Klausur für einen Grundkurs im 2. Semester aus Berlin. 39 Punkte, 90min

Glücksrad mit Urne - Übungsaufgabe Stochastik LK

21 min, 6 Aufgaben #1710

Eine Übungsaufgabe, die Urne und Glücksrad kombiniert. Nebst Baumdiagrammen, Bernoulli und der summierten Binomialverteilung werden auch Gewinnerwartung und Prozentrechnung beim Kreis benötigt.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum