Einleitung
Die Aufgaben führen schrittweise an das Lösen von reinquadratischen Gleichungen verschiedener Formen heran.
40 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Bestimme die Lösungsmenge ohne Taschenrechner.
$x^2 = 9$
$x^2 = \frac{4}{25}$
$x^2 = -25$
$x^2 = 0$
$x^2 = \frac{196}{81}$
$x^2 = 0,81$
$x^2 = 0,04$
$x^2 = 6,25$
$x^2 = 1 \frac{15}{49}$
Bestimme die Lösungsmenge ohne Taschenrechner.
$3x^2= 48$
$\frac{1}{4}x^2= 1$
$-\frac{2}{3}x^2= -\frac{3}{8}$
$\frac{1}{2}x^2= 0$
$5x^2 = 180$
$\frac{1}{4}x^2 = 400$
$4x^2 = -24$
$12x^2 =972$
$x^2 +5= 30$
$x^2 -8= 56$
$x^2 +25= 16$
$x^2 -\frac{1}{7}= \frac{29}{49}$
$x^2 - 15 = 34$
$x^2 - \frac{9}{49} = 0$
$x^2 - 64 = 0$
$x^2 + 9 = 0$
Bestimme die Lösungsmenge.
$3x^2 - 17 = 91$
$12x^2 + 4 = 112$
$5x^2 - 1,25 = 0$
$\frac{1}{2}x^2 + \frac{1}{3} = \frac{5}{6}$
$2x^2 - \frac{4}{5} = 7,2$
$\frac{1}{3}x^2 + 2 = 5$
$\frac{16}{9}x^2 - 1 = 0$
$3x^2+10=4$
$-\frac{1}{5}x^2 + 9 = 4$
Bestimme die Lösungsmenge.
$(x-18)^2 = 625$
$(x+7)^2 = 121$
$\frac{1}{2}(x-3)^2 = 12,5$
$2(x+5)^2 -10,58 = 0$
Bestimme die Lösungsmenge. Wende zunächst eine binomische Formel an.
$x^2-10x+25 = 36$
$x^2+14x+49 =225$
$x^2 + \frac{14}{8}x + \frac{49}{64} = \frac{121}{64}$
$x^2-12x+36 = 16$
$x^2 + 18x + 81 = 0$
$x^2 - 24x + 144 = -9$
Weitere Arbeitsblätter
Kepler und Gravitation
81 min, 8 Aufgaben #6030Zwei Massen ziehen sich, je nach ihrer Entfernung voneinander, an. Eine Formel um auszurechnen wie stark gibt es natürlich auch. Damit einhergehend gibt es Aufgaben, die gelöst werden können. Zum Beispiel Geschwindigkeiten von Raketen und Satelliten oder die Masse der Sonne.
Bernoulli-Ketten Anwendung
37 min, 4 Aufgaben #1701Anwendungsaufgaben zu Bernoulli-Ketten. Die ersten zwei Aufgaben fragen die grundlegenden Berechnungen ab. Die dritte ist vom Typ mindestens-mindestens und die vierte zeichnet sich durch eine äußert schwierige Aufgabenstellung aus. Ein kühler Kopf ist hier gefragt.
Abschlussarbeit Klasse 9 mit Taschenrechner
38 min, 3 Aufgaben #2852Aufgaben quer durch die 9. Klasse. Statistik, Diagramme, Volumenberechnungen am Kegel, Funktionen und mehr im Koordinatensystem. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
Vermischte Übungen MSA
36 min, 6 Aufgaben #1290Textgleichungen, Gleichungen mit vielen Klammern, Gleichungssysteme, Textaufgaben zu Körperberechnungen und Wahrscheinlichkeiten sind Inhalt dieses Arbeitsblattes. Anspruchsvolle Aufgaben quer durchs Beet.
Textgleichungen mit Brüchen für Profis 3v3
56 min, 8 Aufgaben #1343Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.