Einleitung
Die Aufgaben führen schrittweise an das Lösen von reinquadratischen Gleichungen verschiedener Formen heran.
40 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Bestimme die Lösungsmenge ohne Taschenrechner.
$x^2 = 9$
$x^2 = \frac{4}{25}$
$x^2 = -25$
$x^2 = 0$
$x^2 = \frac{196}{81}$
$x^2 = 0,81$
$x^2 = 0,04$
$x^2 = 6,25$
$x^2 = 1 \frac{15}{49}$
Bestimme die Lösungsmenge ohne Taschenrechner.
$3x^2= 48$
$\frac{1}{4}x^2= 1$
$-\frac{2}{3}x^2= -\frac{3}{8}$
$\frac{1}{2}x^2= 0$
$5x^2 = 180$
$\frac{1}{4}x^2 = 400$
$4x^2 = -24$
$12x^2 =972$
$x^2 +5= 30$
$x^2 -8= 56$
$x^2 +25= 16$
$x^2 -\frac{1}{7}= \frac{29}{49}$
$x^2 - 15 = 34$
$x^2 - \frac{9}{49} = 0$
$x^2 - 64 = 0$
$x^2 + 9 = 0$
Bestimme die Lösungsmenge.
$3x^2 - 17 = 91$
$12x^2 + 4 = 112$
$5x^2 - 1,25 = 0$
$\frac{1}{2}x^2 + \frac{1}{3} = \frac{5}{6}$
$2x^2 - \frac{4}{5} = 7,2$
$\frac{1}{3}x^2 + 2 = 5$
$\frac{16}{9}x^2 - 1 = 0$
$3x^2+10=4$
$-\frac{1}{5}x^2 + 9 = 4$
Bestimme die Lösungsmenge.
$(x-18)^2 = 625$
$(x+7)^2 = 121$
$\frac{1}{2}(x-3)^2 = 12,5$
$2(x+5)^2 -10,58 = 0$
Bestimme die Lösungsmenge. Wende zunächst eine binomische Formel an.
$x^2-10x+25 = 36$
$x^2+14x+49 =225$
$x^2 + \frac{14}{8}x + \frac{49}{64} = \frac{121}{64}$
$x^2-12x+36 = 16$
$x^2 + 18x + 81 = 0$
$x^2 - 24x + 144 = -9$
Weitere Arbeitsblätter
Aus 3 mach 4 - Abitur GK Berlin 2008
23 min, 5 Aufgaben #1987Original Abiturprüfung aus Berlin für den Grundkurs mit einem Glücksspielautomat. Mit dabei war die Kombinatorik, stochastische Unabhängigkeit, Bernoulli-Ketten, mindestens-mindestens Aufgabe und ein Hypothesentest.
Wahrscheinlichkeiten
14 min, 2 Aufgaben #7390Zwei originale Aufgaben der mittleren Schulabschluss Prüfung (MSA) von 2012 und 2014 aus Berlin.
Gauß Verfahren
84 min, 7 Aufgaben #1777Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.
Lineare Funktionen
54 min, 6 Aufgaben #3800Dieses Arbeitsblatt führt an lineare Funktionen heran. Weiterführend kann das Thema zum Beispiel mit Textaufgaben vertieft oder auf lineare Gleichungssysteme erweitert werden.
Einführung Terme
65 min, 8 Aufgaben #2826Erste Aufgaben zu Termen. Termwerte berechen, Terme vergleichen und Textgleichungen in beide Richtungen: sowohl Gleichungen aus Texten aufstellen aber auch Texte basierend auf Gleichungen verfassen. Die Hälfte der Aufgaben beschäftigt sich mit dem Zusammenfassen von Termen.