Einleitung

Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)

76 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Ermitteln Sie eine Stammfunktion.

$ f(x) = 3x$

$ f(x) = 8x^3$

$ f(x) = x^2+x$

$ f(x) = 3x^2+4x+1$

$ f(x) = x^6 -3x^5+7x^3$

$ f(x) = \frac{x^2}{3} + \frac{x}{4}$

2

$ f(x) = \frac{x^4}{10} -3x^2 +\frac{2}{3}$

$ f(x) = \frac{1}{x^2}$

$ f(x) = \frac{1}{x^3}$

$ f(x) = \sqrt{x}$

3

Ermitteln Sie die Gleichung der Funktion, wenn die Ableitung und ein Punkt des Funktionsgraphen gegeben ist.

$f'(x) = 4x$; $ \EPUNKT{P}{2}{5} $

$f'(x) = 2x-3$; $ \EPUNKT{P}{1}{0} $

$f'(x) = -6x+5$; $ \EPUNKT{P}{2}{3} $

$f'(x) = -x+1$; $ \EPUNKT{P}{-1}{1} $

4

$f'(x) = 3x^2-4x$; $ \EPUNKT{P}{0}{-4} $

$f'(x) = 6x^2-5$; $ \EPUNKT{P}{-2}{-5} $

$f'(x) = -x^2+x+4$; $ \EPUNKT{P}{3}{4} $

$f'(x) = 2x^3-6x$; $ \EPUNKT{P}{-2}{1} $

5

Berechnen Sie den Flächeninhalt, den der Graph der gegebenen Funktion mit der $ x $-Achse einschließt.

$f(x) = x^2-1$

$g(x) = x^3 - \frac{1}{4}x^4$

6

Berechnen Sie den Flächeninhalt der Fläche, die das Schaubild der gegebenen Funktion mit der $x$-Achse einschließt.

$f(x) = x^3-3x^2+2x$

$g(x) = -x^3+3x^2-2x$

7

Gegeben ist die Funktion $f(x) = x^4-4x^2$.

Wie groß ist die Fläche, die der Graph von $ f $ mit der $ x $-Achse einschließt?

8

Gegeben ist die Funktion $ f(x) = -3x^2 + 12x$.

Wie groß ist die Fläche, die der Graph $ G_f $ von $ f$ mit der $x$-Achse einschließt?

Welche Fläche schließt $ G_f $ mit der $x$-Achse im Intervall I = [2; 5] ein?

Die Fläche zwischen $ G_f $, der $ x $-Achse und zwischen den Geraden $ x = 0 $ und $ x = a $ $ (0 < a < 4) $ beträgt 5 Flächeneinheiten. Wie groß ist $ a $?
%(d.h. über dem Intervall I = [0; a])

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis Grundkurs


Weitere Arbeitsblätter

Teilweises Wurzelziehen - Rationalmachen des Nenners

52 min, 11 Aufgaben #0992

Aufgaben zum teilweisen, auch partiellen, Wurzelziehen mit Zahlen, Variablen und Faktorisieren. Einfache Aufgaben zum Rationalmachen des Nenners.

Klammern auflösen

56 min, 9 Aufgaben #3337

Alle Möglichkeiten von Klammern auf einem Blatt. Mit diesen Übungen kann beim Auflösen von Klammern gar nichts mehr schief laufen.

Gartenhaus Abitur GK Berlin 2016

62 min, 6 Aufgaben #1981

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Übungsaufgaben zur Wahrscheinlichkeitsrechnung

29 min, 4 Aufgaben #1656

Gewinnerwartung und Wahrscheinlichkeiten bei einem bzw. zwei Würfeln. Die Aufgaben beschäftigen sich hauptsächlich mit Baumdiagrammen und damit, aus dem Text herauszufinden was genau man zählen muss.

Abschlussarbeit Klasse 9 mit Taschenrechner

42 min, 6 Aufgaben #2853

Aufgaben quer durch die 9. Klasse. Statistiken, lineare Gleichungen, Funktionen, Textgleichungen, Strahlensätze, Prozentrechnung und Flächeninhalten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum