Einleitung

Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)

76 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Ermitteln Sie eine Stammfunktion.

$ f(x) = 3x$

$ f(x) = 8x^3$

$ f(x) = x^2+x$

$ f(x) = 3x^2+4x+1$

$ f(x) = x^6 -3x^5+7x^3$

$ f(x) = \frac{x^2}{3} + \frac{x}{4}$

2

$ f(x) = \frac{x^4}{10} -3x^2 +\frac{2}{3}$

$ f(x) = \frac{1}{x^2}$

$ f(x) = \frac{1}{x^3}$

$ f(x) = \sqrt{x}$

3

Ermitteln Sie die Gleichung der Funktion, wenn die Ableitung und ein Punkt des Funktionsgraphen gegeben ist.

$f'(x) = 4x$; $ \EPUNKT{P}{2}{5} $

$f'(x) = 2x-3$; $ \EPUNKT{P}{1}{0} $

$f'(x) = -6x+5$; $ \EPUNKT{P}{2}{3} $

$f'(x) = -x+1$; $ \EPUNKT{P}{-1}{1} $

4

$f'(x) = 3x^2-4x$; $ \EPUNKT{P}{0}{-4} $

$f'(x) = 6x^2-5$; $ \EPUNKT{P}{-2}{-5} $

$f'(x) = -x^2+x+4$; $ \EPUNKT{P}{3}{4} $

$f'(x) = 2x^3-6x$; $ \EPUNKT{P}{-2}{1} $

5

Berechnen Sie den Flächeninhalt, den der Graph der gegebenen Funktion mit der $ x $-Achse einschließt.

$f(x) = x^2-1$

$g(x) = x^3 - \frac{1}{4}x^4$

6

Berechnen Sie den Flächeninhalt der Fläche, die das Schaubild der gegebenen Funktion mit der $x$-Achse einschließt.

$f(x) = x^3-3x^2+2x$

$g(x) = -x^3+3x^2-2x$

7

Gegeben ist die Funktion $f(x) = x^4-4x^2$.

Wie groß ist die Fläche, die der Graph von $ f $ mit der $ x $-Achse einschließt?

8

Gegeben ist die Funktion $ f(x) = -3x^2 + 12x$.

Wie groß ist die Fläche, die der Graph $ G_f $ von $ f$ mit der $x$-Achse einschließt?

Welche Fläche schließt $ G_f $ mit der $x$-Achse im Intervall I = [2; 5] ein?

Die Fläche zwischen $ G_f $, der $ x $-Achse und zwischen den Geraden $ x = 0 $ und $ x = a $ $ (0 < a < 4) $ beträgt 5 Flächeneinheiten. Wie groß ist $ a $?
%(d.h. über dem Intervall I = [0; a])

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis Grundkurs


Weitere Arbeitsblätter

Integration 101

61 min, 10 Aufgaben #BDEGH

Aufgaben von leicht nach schwerer zum Üben.

Lernkontrolle Potenzen

39 min, 8 Aufgaben #0994

Verschiedene Aufgaben zu Zehnerpotenzen. Zwei Textaufgaben inklusive. Bei den zwei letzten Aufgaben müssen mit Hilfe von Potenzgesetzen Terme vereinfacht werden.

Übersicht e-Funktionen ableiten

69 min, 7 Aufgaben #6600

Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel). Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.

Ikarus Abitur GK Berlin 2016

64 min, 6 Aufgaben #1980

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Strahlensätze *

27 min, 3 Aufgaben #4181

Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum