Einleitung

Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)

76 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Ermitteln Sie eine Stammfunktion.

$ f(x) = 3x$

$ f(x) = 8x^3$

$ f(x) = x^2+x$

$ f(x) = 3x^2+4x+1$

$ f(x) = x^6 -3x^5+7x^3$

$ f(x) = \frac{x^2}{3} + \frac{x}{4}$

2

$ f(x) = \frac{x^4}{10} -3x^2 +\frac{2}{3}$

$ f(x) = \frac{1}{x^2}$

$ f(x) = \frac{1}{x^3}$

$ f(x) = \sqrt{x}$

3

Ermitteln Sie die Gleichung der Funktion, wenn die Ableitung und ein Punkt des Funktionsgraphen gegeben ist.

$f'(x) = 4x$; $ \EPUNKT{P}{2}{5} $

$f'(x) = 2x-3$; $ \EPUNKT{P}{1}{0} $

$f'(x) = -6x+5$; $ \EPUNKT{P}{2}{3} $

$f'(x) = -x+1$; $ \EPUNKT{P}{-1}{1} $

4

$f'(x) = 3x^2-4x$; $ \EPUNKT{P}{0}{-4} $

$f'(x) = 6x^2-5$; $ \EPUNKT{P}{-2}{-5} $

$f'(x) = -x^2+x+4$; $ \EPUNKT{P}{3}{4} $

$f'(x) = 2x^3-6x$; $ \EPUNKT{P}{-2}{1} $

5

Berechnen Sie den Flächeninhalt, den der Graph der gegebenen Funktion mit der $ x $-Achse einschließt.

$f(x) = x^2-1$

$g(x) = x^3 - \frac{1}{4}x^4$

6

Berechnen Sie den Flächeninhalt der Fläche, die das Schaubild der gegebenen Funktion mit der $x$-Achse einschließt.

$f(x) = x^3-3x^2+2x$

$g(x) = -x^3+3x^2-2x$

7

Gegeben ist die Funktion $f(x) = x^4-4x^2$.

Wie groß ist die Fläche, die der Graph von $ f $ mit der $ x $-Achse einschließt?

8

Gegeben ist die Funktion $ f(x) = -3x^2 + 12x$.

Wie groß ist die Fläche, die der Graph $ G_f $ von $ f$ mit der $x$-Achse einschließt?

Welche Fläche schließt $ G_f $ mit der $x$-Achse im Intervall I = [2; 5] ein?

Die Fläche zwischen $ G_f $, der $ x $-Achse und zwischen den Geraden $ x = 0 $ und $ x = a $ $ (0 < a < 4) $ beträgt 5 Flächeneinheiten. Wie groß ist $ a $?
%(d.h. über dem Intervall I = [0; a])

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis Grundkurs


Weitere Arbeitsblätter

Diagnosetest konstruieren und argumentieren

36 min, 5 Aufgaben #4025

Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.

Kepler und Gravitation

81 min, 8 Aufgaben #6030

Zwei Massen ziehen sich, je nach ihrer Entfernung voneinander, an. Eine Formel um auszurechnen wie stark gibt es natürlich auch. Damit einhergehend gibt es Aufgaben, die gelöst werden können. Zum Beispiel Geschwindigkeiten von Raketen und Satelliten oder die Masse der Sonne.

BBR - Vergleichsarbeit Mathematik

59 min, 14 Aufgaben #2508

Die Vergleichende Arbeit 2015 im Fach Mathematik zum Erwerb der Berufsbildungsreife bzw. des Hauptschulabschlusses. Bearbeitungszeit: 90 Minuten. Zugelassene Hilfsmittel: Formelübersicht und wissenschaftlicher nicht grafikfähiger Standard-Taschenrechner.

Quadratische Gleichungen

40 min, 5 Aufgaben #0060

Die Aufgaben führen schrittweise an das Lösen von reinquadratischen Gleichungen verschiedener Formen heran.

Pythagoras - Anwendungen

49 min, 6 Aufgaben #0040

Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum