Einleitung
Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)
76 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.
Aufgaben
Ermitteln Sie eine Stammfunktion.
$ f(x) = 3x$
$ f(x) = 8x^3$
$ f(x) = x^2+x$
$ f(x) = 3x^2+4x+1$
$ f(x) = x^6 -3x^5+7x^3$
$ f(x) = \frac{x^2}{3} + \frac{x}{4}$
$ f(x) = \frac{x^4}{10} -3x^2 +\frac{2}{3}$
$ f(x) = \frac{1}{x^2}$
$ f(x) = \frac{1}{x^3}$
$ f(x) = \sqrt{x}$
Ermitteln Sie die Gleichung der Funktion, wenn die Ableitung und ein Punkt des Funktionsgraphen gegeben ist.
$f'(x) = 4x$; $ \EPUNKT{P}{2}{5} $
$f'(x) = 2x-3$; $ \EPUNKT{P}{1}{0} $
$f'(x) = -6x+5$; $ \EPUNKT{P}{2}{3} $
$f'(x) = -x+1$; $ \EPUNKT{P}{-1}{1} $
$f'(x) = 3x^2-4x$; $ \EPUNKT{P}{0}{-4} $
$f'(x) = 6x^2-5$; $ \EPUNKT{P}{-2}{-5} $
$f'(x) = -x^2+x+4$; $ \EPUNKT{P}{3}{4} $
$f'(x) = 2x^3-6x$; $ \EPUNKT{P}{-2}{1} $
Berechnen Sie den Flächeninhalt, den der Graph der gegebenen Funktion mit der $ x $-Achse einschließt.
$f(x) = x^2-1$
$g(x) = x^3 - \frac{1}{4}x^4$
Berechnen Sie den Flächeninhalt der Fläche, die das Schaubild der gegebenen Funktion mit der $x$-Achse einschließt.
$f(x) = x^3-3x^2+2x$
$g(x) = -x^3+3x^2-2x$
Gegeben ist die Funktion $f(x) = x^4-4x^2$.
Wie groß ist die Fläche, die der Graph von $ f $ mit der $ x $-Achse einschließt?
Gegeben ist die Funktion $ f(x) = -3x^2 + 12x$.
Wie groß ist die Fläche, die der Graph $ G_f $ von $ f$ mit der $x$-Achse einschließt?
Welche Fläche schließt $ G_f $ mit der $x$-Achse im Intervall I = [2; 5] ein?
Die Fläche zwischen $ G_f $, der $ x $-Achse und zwischen den Geraden $ x = 0 $ und $ x = a $ $ (0 < a < 4) $ beträgt 5 Flächeneinheiten. Wie groß ist $ a $?
%(d.h. über dem Intervall I = [0; a])
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Lernkontrolle Potenzen
39 min, 8 Aufgaben #0994Verschiedene Aufgaben zu Zehnerpotenzen. Zwei Textaufgaben inklusive. Bei den zwei letzten Aufgaben müssen mit Hilfe von Potenzgesetzen Terme vereinfacht werden.
Übersicht e-Funktionen ableiten
69 min, 7 Aufgaben #6600Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel). Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.
Ikarus Abitur GK Berlin 2016
64 min, 6 Aufgaben #1980Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Strahlensätze *
27 min, 3 Aufgaben #4181Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.