Einleitung
Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.
49 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Gegeben ist ein Quadrat sowie ein Würfel der Kantenlänge $4,5\,\mathrm{m}$.
Wie lang ist die Diagonale des Quadrats?
Wie lang ist die Raumdiagonale des Würfels?
Gegeben ist ein gleichschenkliges Dreieck mit der Grundseite $c$, Höhe $h$ und Schenkellänge $s$.
Bestimme jeweils das Fehlende.
$c = 17\,\mathrm{cm}$
$s = 10\,\mathrm{cm}$
$c = 17\,\mathrm{m}$
$h = 3\,\mathrm{m}$
$s = 17\,\mathrm{km}$
$h = 4\,\mathrm{km}$
Es geht um eine Pyramide mit quadratischer Grundfläche.
Gegeben ist die Grundkante $a = 3\,\mathrm{cm}$ und die Seitenkante $s = 13\,\mathrm{cm}$.
Berechne die Höhe der Pyramide.
Berechne die Höhe der Seitenflächen.
Berechne den Flächeninhalt einer Seitenfläche.
Berechne die Gesamtoberfläche der Pyramide.
Die Abbildung zeigt ein Walmdach. Berechne jeweils die fehlende Größe.
$a = 10\,\mathrm{m}$
$b = 6\,\mathrm{m}$
$c = 7\,\mathrm{m}$
$g = 5\,\mathrm{m}$
$a = 12\,\mathrm{m}$
$b = 6\,\mathrm{m}$
$h = 7\,\mathrm{m}$
$c = 8\,\mathrm{m}$

Ein Schilfrohr ragt 1 m aus dem Wasser. Zieht man die Spitze 6 m zur Seite, berührt sie die Wasseroberfläche.
Wie tief ist der See an dieser Stelle und wie lang ist das Schilfrohr?
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Anwendungsaufgaben radioaktiver Zerfall
57 min, 5 Aufgaben #6543Textaufgaben über Stoffe, die exponentiell Zerfallen. Wertetabellen, Prozente und Halbwertszeiten kommen unter anderem vor. Es sind im Wesentlichen verschiedene Aufgaben zu Exponentialfunktionen deren Wachstumsfaktor kleiner als 1 ist.
Diagnosetest konstruieren und argumentieren
36 min, 5 Aufgaben #4025Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.
Ebenengleichungen
22 min, 4 Aufgaben #1925Überblick aller drei Arten von Ebenengleichungen und wie man jeweils von einer Form in die andere kommt. Paramatergleichung, Normalengleichung und Koordinantengleichungen werden alle untereinander umgeformt.
Bernoulli-Ketten Anwendung
37 min, 4 Aufgaben #1701Anwendungsaufgaben zu Bernoulli-Ketten. Die ersten zwei Aufgaben fragen die grundlegenden Berechnungen ab. Die dritte ist vom Typ mindestens-mindestens und die vierte zeichnet sich durch eine äußert schwierige Aufgabenstellung aus. Ein kühler Kopf ist hier gefragt.
Extremwertaufgaben
72 min, 7 Aufgaben #1599Sieben verschiedene Aufgaben mit immer derselben Fragen: wann wird's maximal bzw. minimal? Sei es ein Rechteck im Kreis, der Graph einer Funktion, eine Konservendose oder eine Marmorplatte: überall muss zuerst eine Hauptbedingung und eine Nebenbedingung aufgestellt und dann zusammen in eine Funktion gepackt werden. Letztlich wird von dieser dann jedes mal der Extrempunkt bestimmt.