Einleitung

Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.

49 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.

Aufgaben

1

Gegeben ist ein Quadrat sowie ein Würfel der Kantenlänge $4,5\,\mathrm{m}$.

Wie lang ist die Diagonale des Quadrats?

Wie lang ist die Raumdiagonale des Würfels?

2

Gegeben ist ein gleichschenkliges Dreieck mit der Grundseite $c$, Höhe $h$ und Schenkellänge $s$.

Bestimme jeweils das Fehlende.

$c = 17\,\mathrm{cm}$
$s = 10\,\mathrm{cm}$

$c = 17\,\mathrm{m}$
$h = 3\,\mathrm{m}$

$s = 17\,\mathrm{km}$
$h = 4\,\mathrm{km}$

3

Es geht um eine Pyramide mit quadratischer Grundfläche.

Gegeben ist die Grundkante $a = 3\,\mathrm{cm}$ und die Seitenkante $s = 13\,\mathrm{cm}$.

Berechne die Höhe der Pyramide.

Berechne die Höhe der Seitenflächen.

Berechne den Flächeninhalt einer Seitenfläche.

Berechne die Gesamtoberfläche der Pyramide.

4

Die Abbildung zeigt ein Walmdach. Berechne jeweils die fehlende Größe.

$a = 10\,\mathrm{m}$
$b = 6\,\mathrm{m}$
$c = 7\,\mathrm{m}$
$g = 5\,\mathrm{m}$

$a = 12\,\mathrm{m}$
$b = 6\,\mathrm{m}$
$h = 7\,\mathrm{m}$
$c = 8\,\mathrm{m}$

5

Ein regelmäßiges Sechseck hat die Seitenlänge $a = 6\,\mathrm{cm}$.
Berechne den Flächeninhalt.

6

Ein Schilfrohr ragt 1 m aus dem Wasser. Zieht man die Spitze 6 m zur Seite, berührt sie die Wasseroberfläche.

Wie tief ist der See an dieser Stelle und wie lang ist das Schilfrohr?

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Klasse 9 Flächensätze


Weitere Arbeitsblätter

Studienkolleg Vektoren, SS 2017

126 min, 10 Aufgaben #1818

Übungsblatt der Hochschule Kaiserslautern, University of Applied Sciences, zum Thema Vektoren.

Integration 101

61 min, 10 Aufgaben #BDEGH

Aufgaben von leicht nach schwerer zum Üben.

Aus 3 mach 4 - Abitur GK Berlin 2008

23 min, 5 Aufgaben #1987

Original Abiturprüfung aus Berlin für den Grundkurs mit einem Glücksspielautomat. Mit dabei war die Kombinatorik, stochastische Unabhängigkeit, Bernoulli-Ketten, mindestens-mindestens Aufgabe und ein Hypothesentest.

Wichtige Formeln im Gebäudeenergiegesetz

0 min, 4 Aufgaben #PQUV

In diesem Arbeitsblatt werden die grundlegenden Formeln zur Berechnung der wichtigsten Kennzahlen im Gebäudeenergiegesetz (GEG) vorgestellt. Sie erhalten die notwendigen Formeln und Erklärungen, um den Primärenergiebedarf, den Transmissionswärmeverlust, den Erneuerbare-Energien-Anteil und den U-Wert zu verstehen und anzuwenden. Diese Kennzahlen sind entscheidend für die Beurteilung der Energieeffizienz von Gebäuden und für die Umsetzung der Vorgaben des GEG.

Einführung Terme

65 min, 8 Aufgaben #2826

Erste Aufgaben zu Termen. Termwerte berechen, Terme vergleichen und Textgleichungen in beide Richtungen: sowohl Gleichungen aus Texten aufstellen aber auch Texte basierend auf Gleichungen verfassen. Die Hälfte der Aufgaben beschäftigt sich mit dem Zusammenfassen von Termen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum