Einleitung
Anwendungsaufgaben mit dem Satz des Pythagoras. Unter anderem werden Diagonale von Quadrat und Würfel berechnet, Berechnungen am gleichschenkligen Dreieck, Pyramide und Walmdach durchgeführt u.v.m.
49 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Gegeben ist ein Quadrat sowie ein Würfel der Kantenlänge $4,5\,\mathrm{m}$.
Wie lang ist die Diagonale des Quadrats?
Wie lang ist die Raumdiagonale des Würfels?
Gegeben ist ein gleichschenkliges Dreieck mit der Grundseite $c$, Höhe $h$ und Schenkellänge $s$.
Bestimme jeweils das Fehlende.
$c = 17\,\mathrm{cm}$
$s = 10\,\mathrm{cm}$
$c = 17\,\mathrm{m}$
$h = 3\,\mathrm{m}$
$s = 17\,\mathrm{km}$
$h = 4\,\mathrm{km}$
Es geht um eine Pyramide mit quadratischer Grundfläche.
Gegeben ist die Grundkante $a = 3\,\mathrm{cm}$ und die Seitenkante $s = 13\,\mathrm{cm}$.
Berechne die Höhe der Pyramide.
Berechne die Höhe der Seitenflächen.
Berechne den Flächeninhalt einer Seitenfläche.
Berechne die Gesamtoberfläche der Pyramide.
Die Abbildung zeigt ein Walmdach. Berechne jeweils die fehlende Größe.
$a = 10\,\mathrm{m}$
$b = 6\,\mathrm{m}$
$c = 7\,\mathrm{m}$
$g = 5\,\mathrm{m}$
$a = 12\,\mathrm{m}$
$b = 6\,\mathrm{m}$
$h = 7\,\mathrm{m}$
$c = 8\,\mathrm{m}$

Ein Schilfrohr ragt 1 m aus dem Wasser. Zieht man die Spitze 6 m zur Seite, berührt sie die Wasseroberfläche.
Wie tief ist der See an dieser Stelle und wie lang ist das Schilfrohr?
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Übungsaufgaben Wahrscheinlichkeitsrechnung
39 min, 5 Aufgaben #1652Übungsaufgaben mit Baumdiagrammen und Abzählverfahren. Mit dabei sind das Werfen von zwei Würfeln, Urnen mit Kugeln (mit bzw. ohne zurücklegen), Kombinatorik im Modehaus und Rosinenbrötchen.
Kleine vermischte Übungen - Klasse 8
50 min, 12 Aufgaben #5200Bunt gemischte Textaufgaben zu verschiedenen Themen der 8. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.
Textgleichungen mit Brüchen für Profis 1v3
39 min, 8 Aufgaben #1341Textaufgaben müssen gelöst werden indem man Gleichungen aufstellt bei denen Brüche vorkommen.
Strahlensätze **
54 min, 6 Aufgaben #4182Drei Schenkel, verdrehte Skizzen, Erbsen und der Mond sowie Bergspitzen. Das Prinzip ist das Gleiche, aber die Schwierigkeit ist doch um einiges größer als sonst. Das nächste Level an Strahlensatzaufgaben sozusagen.
Rechnen mit Brüchen
53 min, 13 Aufgaben #066013 mal 5 Aufgaben zum Addieren, Subtrahieren, Multiplizieren und Dividieren von Brüchen. Täglich etwas machen und 2 Wochen später ist man besser. :)