Einleitung
Textaufgaben über Stoffe, die exponentiell Zerfallen. Wertetabellen, Prozente und Halbwertszeiten kommen unter anderem vor.
Es sind im Wesentlichen verschiedene Aufgaben zu Exponentialfunktionen deren Wachstumsfaktor kleiner als 1 ist.
57 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Von einem radioaktiven Stoff sind 60,0\,s nach Beginn der Messung 54,2 % der vorhandenen Kerne zerfallen.
Nach welcher Zeit beträgt die Anzahl der vorhandenen Kerne nur noch 15,0 % der Ausgangsmenge?
Ein radioaktives Präparat zerfällt so, dass die vorhandene Substanz nach jeweils 7 Tagen auf ein Fünftel zurückgeht. Zu Beginn der Beobachtung sind 15mg der Substanz vorhanden.
Bestimme die Exponentialgleichung, die diesem Zerfall zugrunde liegt.
Nach wie viel Tagen ist noch 1mg der ursprünglichen Substanz vorhanden?
Bestimme die Halbwertszeit des Präparats.
Bei Schilddrüsenerkrankungen bekommt der Patient radioaktives Jod gespritzt. Weil die Schilddrüse die einzige Stelle im Körper ist, die Jod braucht, landet all dieses radioaktive Jod dort. Radioaktives Jod besitzt eine Halbwertszeit von ungefähr 8 Tagen.
Nach wie vielen Tagen sind weniger als 2 Promille der Anfangsdosis vorhanden?
Der radioaktive Stoff Radium besitzt eine Halbwertszeit von 1590 Jahren.
Bestimme die Funktionsgleichung in der Form $ y = y_o \cdot 10^{kt} $.
Nach welcher Zeit sind noch 75 % der ursprünglichen Masse vorhanden?
Die Masse einer radioaktiven Substanz wird minütlich ermittelt. Man erhält folgende Tabelle:
0 | 1 | 2 | 3 | 4 | 5 | 6 |
75 | 71.6 | 68.4 | 65.3 | 62.3 | 59.5 | 56.8 |
Prüfe, ob es sich um exponentiellen Zerfall handelt.
Ermittle das Zerfallsgesetz und die Halbwertszeit.
Nach welcher Zeit ist noch 1 % der ursprünglichen Masse vorhanden?
Weitere Arbeitsblätter
Arbeit - ganzrationale Funktionen
49 min, 3 Aufgaben #1520Klassenarbeit über ganzrationale Funktionen mit 55 erreichbaren Punkten.
Lineare Gleichungssysteme lösen
62 min, 7 Aufgaben #3820Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren. Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen. Am Ende noch Übungen bei denen auch Brüche vorkommen.
Abschlussarbeit Klasse 9 mit Taschenrechner
38 min, 3 Aufgaben #2852Aufgaben quer durch die 9. Klasse. Statistik, Diagramme, Volumenberechnungen am Kegel, Funktionen und mehr im Koordinatensystem. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
Ableitungsfunktion
34 min, 8 Aufgaben #1588Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden. Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.
Klassenarbeit Wachstum und Zerfall
38 min, 5 Aufgaben #6551Originale Klassenarbeit zum Thema Wachstum und Zerfall aus einem E-Kurs eines 10. Jahrgangs. Es wird auf den Unterschied von linearen und exponentiellen Wachstum eingegangen, Funktionsgleichungen aufgestellt, Graphen gezeichnet und Halbwertszeiten berechnet. Außerdem kommt prozentuale Ab- und Zunahme dran, sowie das Aufstellen einer Funktionsgleichung mit zwei Punkten als Zusatzaufgabe.