Einleitung
Textaufgaben über Stoffe, die exponentiell Zerfallen. Wertetabellen, Prozente und Halbwertszeiten kommen unter anderem vor.
Es sind im Wesentlichen verschiedene Aufgaben zu Exponentialfunktionen deren Wachstumsfaktor kleiner als 1 ist.
58 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Von einem radioaktiven Stoff sind 60,0s nach Beginn der Messung 54,2 % der vorhandenen Kerne zerfallen.
Nach welcher Zeit beträgt die Anzahl der vorhandenen Kerne nur noch 15,0 % der Ausgangsmenge?
Ein radioaktives Präparat zerfällt so, dass die vorhandene Substanz nach jeweils 7 Tagen auf ein Fünftel zurückgeht. Zu Beginn der Beobachtung sind 15mg der Substanz vorhanden.
Bestimme die Exponentialgleichung, die diesem Zerfall zugrunde liegt.
Nach wie viel Tagen ist noch 1mg der ursprünglichen Substanz vorhanden?
Bestimme die Halbwertszeit des Präparats.
Bei Schilddrüsenerkrankungen bekommt der Patient radioaktives Jod gespritzt. Weil die Schilddrüse die einzige Stelle im Körper ist, die Jod braucht, landet all dieses radioaktive Jod dort. Radioaktives Jod besitzt eine Halbwertszeit von ungefähr 8 Tagen.
Nach wie vielen Tagen sind weniger als 2 Promille der Anfangsdosis vorhanden?
Der radioaktive Stoff Radium besitzt eine Halbwertszeit von 1590 Jahren.
Bestimme die Funktionsgleichung in der Form $ y = y_o \cdot 10^{kt} $.
Nach welcher Zeit sind noch 75 % der ursprünglichen Masse vorhanden?
Die Masse einer radioaktiven Substanz wird minütlich ermittelt. Man erhält folgende Tabelle:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 75 | 71.6 | 68.4 | 65.3 | 62.3 | 59.5 | 56.8 |
Prüfe, ob es sich um exponentiellen Zerfall handelt.
Ermittle das Zerfallsgesetz und die Halbwertszeit.
Nach welcher Zeit ist noch 1 % der ursprünglichen Masse vorhanden?
Weitere Arbeitsblätter
Teilweises Wurzelziehen - Rationalmachen des Nenners
52 min, 11 Aufgaben #0992Aufgaben zum teilweisen, auch partiellen, Wurzelziehen mit Zahlen, Variablen und Faktorisieren. Einfache Aufgaben zum Rationalmachen des Nenners.
Gauß Verfahren
84 min, 7 Aufgaben #1777Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.
Lernkontrolle Wahrscheinlichkeitsrechnung
36 min, 4 Aufgaben #7392Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.
Ableitungsfunktion und ihre Anwendung
92 min, 12 Aufgaben #1590Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.
Analytische Geometrie - Vermischte Aufgaben
71 min, 5 Aufgaben #1919Vektoren, Geraden und Ebenen im dreidimensionalen Raum. Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.