Einleitung
Aufgaben mit Elektronen und Protonen, die sich in Magnetfeldern im Kreis bewegen oder abgelenkt werden.
Die Lorentzkraft wird dabei der Zentripetalkraft oder der elektrischen Kraft gleichgesetzt.
54 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.
Aufgaben
Ein Proton bewegt sich in einem homogenen Magnetfled der Flussdichte $ 2\,\mathrm{\frac{Vs}{m^2}} $ mit einer Geschwindigkeit $ v = 7,5\cdot 10^5\,\mathrm{\frac{m}{s}} $ senkrecht zu den Feldlinien.
Berechnen Sie den Radius seiner Kreisbahn.
In einem bestimmten Gebiet des interstellaren Raumes gibt es freie Elektronen mit der kinetischen Energie $ 10^{-3}\,\mathrm{eV} $, die sich auf Kreisbahnen mit dem Radius
$ r = 2,5\cdot 10^4\,\mathrm{m} $ bewegen.
Berechnen Sie die magnetische Flussdichte, die die Teilchen auf der Bahn hält.
Ein Elektron und ein Heliumkern werden mit der Geschwindigkeit $ v_E $, $ v_{He} $ in das gleiche homogene Magnetfeld geschossen. Beide Teilchen beschreiben eine Kreisbahn mit demselben Radius $ r $.
In welchem Verhältnis stehen die Geschwindigkeiten zueinander?
($ Q_{He} = 2\cdot e $, $ m_{He} = 6,6442\cdot 10^{-27}\,\mathrm{kg} $)
Kombination von E- und B-Feld
Ein Elektron der Geschwindigkeit $ \vec{v} $, $ v = 2,0\cdot 10^7\,\mathrm{\frac{m}{s}} $, soll das Blendenpaar $ B_1 $, $ B_2 $ und das elektrische Feld zwischen den Platten des Plattenkondensators ($ U = 1,0\,\mathrm{kV} $, $ d = 4,0\,\mathrm{cm} $) unabgelenkt passieren. Hierfür wird dem elektrischen Feld ein geeignetes homogenes Magnetfeld gleicher Ausdehnung überlagert.
Wie verlaufen die Feldlinien dieses Magnetfeldes?
Welchen Betrag besitzt die magnetische Flußdichte?
Wie verhält sich das Elektron, wenn es die Geschwindigkeit $ \vec{v_1} > \vec{v} $ bzw. $ \vec{v_1} < \vec{v} $ besitzt?
Kann auch ein Proton der Geschwindigkeit $ \vec{v} $ diese Anordnung unabgelenkt passieren? (Begründung!)

PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Ableitungsfunktion und ihre Anwendung
92 min, 12 Aufgaben #1590Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.
Kleine vermischte Übungen - Klasse 10
39 min, 13 Aufgaben #7400Bunt gemischte Textaufgaben zu verschiedenen Themen der 10. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.
Abschlussarbeit Klasse 9 mit Taschenrechner
42 min, 6 Aufgaben #2853Aufgaben quer durch die 9. Klasse. Statistiken, lineare Gleichungen, Funktionen, Textgleichungen, Strahlensätze, Prozentrechnung und Flächeninhalten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.
Lichtkunst Abitur GK Hamburg
61 min, 6 Aufgaben #1945Abituraufgabe aus der zentralen schriftlichen Abiturprüfung 2005 im Fach Mathematik aus Hamburg für den Grundkurs mit insgesamt 100 erreichbaren Punkten.
Übungen zu kombinatorischen Abzählverfahren
29 min, 8 Aufgaben #1648Ob mit oder ohne Reihenfolge und mit oder ohne Wiederholung: die Frage, die sich stellt, ist immer die gleiche: wie viele Möglichkeiten gibt es? Bei den Aufgaben kommt man noch häufig durch Abzählen zur Lösung.