Einleitung
Aufgaben mit Elektronen und Protonen, die sich in Magnetfeldern im Kreis bewegen oder abgelenkt werden.
Die Lorentzkraft wird dabei der Zentripetalkraft oder der elektrischen Kraft gleichgesetzt.
54 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.
Aufgaben
Ein Proton bewegt sich in einem homogenen Magnetfled der Flussdichte $ 2\,\mathrm{\frac{Vs}{m^2}} $ mit einer Geschwindigkeit $ v = 7,5\cdot 10^5\,\mathrm{\frac{m}{s}} $ senkrecht zu den Feldlinien.
Berechnen Sie den Radius seiner Kreisbahn.
In einem bestimmten Gebiet des interstellaren Raumes gibt es freie Elektronen mit der kinetischen Energie $ 10^{-3}\,\mathrm{eV} $, die sich auf Kreisbahnen mit dem Radius
$ r = 2,5\cdot 10^4\,\mathrm{m} $ bewegen.
Berechnen Sie die magnetische Flussdichte, die die Teilchen auf der Bahn hält.
Ein Elektron und ein Heliumkern werden mit der Geschwindigkeit $ v_E $, $ v_{He} $ in das gleiche homogene Magnetfeld geschossen. Beide Teilchen beschreiben eine Kreisbahn mit demselben Radius $ r $.
In welchem Verhältnis stehen die Geschwindigkeiten zueinander?
($ Q_{He} = 2\cdot e $, $ m_{He} = 6,6442\cdot 10^{-27}\,\mathrm{kg} $)
Kombination von E- und B-Feld
Ein Elektron der Geschwindigkeit $ \vec{v} $, $ v = 2,0\cdot 10^7\,\mathrm{\frac{m}{s}} $, soll das Blendenpaar $ B_1 $, $ B_2 $ und das elektrische Feld zwischen den Platten des Plattenkondensators ($ U = 1,0\,\mathrm{kV} $, $ d = 4,0\,\mathrm{cm} $) unabgelenkt passieren. Hierfür wird dem elektrischen Feld ein geeignetes homogenes Magnetfeld gleicher Ausdehnung überlagert.
Wie verlaufen die Feldlinien dieses Magnetfeldes?
Welchen Betrag besitzt die magnetische Flußdichte?
Wie verhält sich das Elektron, wenn es die Geschwindigkeit $ \vec{v_1} > \vec{v} $ bzw. $ \vec{v_1} < \vec{v} $ besitzt?
Kann auch ein Proton der Geschwindigkeit $ \vec{v} $ diese Anordnung unabgelenkt passieren? (Begründung!)

PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Polynomdivision und mittlere Änderungsrate
35 min, 6 Aufgaben #1551Klausurvorbereitung zu Potenzfunktionen mit Symmetrieeigenschaften, Polynomdivision, Monotonie und mittlerer Änderungsrate.
Terme und Gleichungen in Texten
57 min, 10 Aufgaben #1300Das Arbeitsblatt besteht aus 3 Teilen. Aufgestellt werden müssen Terme (1), einfache Gleichungen (2), schwierige Gleichungen (3).
Quadratische Gleichungen
74 min, 7 Aufgaben #0062Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.
Terme addieren und subtrahieren
43 min, 8 Aufgaben #2828Terme vereinfachen indem man gleichartige Glieder zusammenfasst und ggf. vorher noch ein paar Klammern auflöst. Auch müssen Terme aufgestellt und Zahlenmauern gelöst werden.