Einleitung

7 Aufgaben für 7 Tage. Es müssen Klammern aufgelöst, Terme zusammengefasst und vor allem Gleichungen gelöst werden. Dabei treten unter anderem auch mal Brüche, die binomischen Formeln und die pq-Formel mit auf.

29 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Vereinfache die Terme.

$\frac{1}{2}(x-1)^2+3$

$-\frac{2}{3}(x-\frac{1}{2})^2+\frac{1}{12}$

2

Löse erst die Klammern auf und fasse dann zusammen.

$75x-(18x-9y)-(3y-4x)$

$3a(7x-5)+2a(4-3x)$

3

Bestimme x.

$16x+19=5(4+3x)$

$(4x-3)\cdot5-6x=-4(5+9x)$

4

Bestimme x.

$(x-8)(x+14)+1=(x+3)(x+2)$

$(x+2)^2-(x-4)^2=11x-8$

5

Bestimme die Lösungsmenge.

$(8-x)(x+7)=52-x^2$

$(x+ 5)(x-4)=x^2-15$

6

Bestimme die Lösungsmenge.

$(x-3)^2+3(x-9)=7-(x+1)$

$(x+2)^2-4(x-1)=8-(x-2)$

7

Löse mit dem Gleichsetzungsverfahren.

$y = -x+8$
$y = x-2$

$x = 3y+7$
$x=5y+15$

PDF zum Drucken

Weitere Arbeitsblätter

Lichtkunst Abitur GK Hamburg

61 min, 6 Aufgaben #1945

Abituraufgabe aus der zentralen schriftlichen Abiturprüfung 2005 im Fach Mathematik aus Hamburg für den Grundkurs mit insgesamt 100 erreichbaren Punkten.

Einführung Terme

65 min, 8 Aufgaben #2826

Erste Aufgaben zu Termen. Termwerte berechen, Terme vergleichen und Textgleichungen in beide Richtungen: sowohl Gleichungen aus Texten aufstellen aber auch Texte basierend auf Gleichungen verfassen. Die Hälfte der Aufgaben beschäftigt sich mit dem Zusammenfassen von Termen.

Bernoulli-Ketten

43 min, 4 Aufgaben #1700

Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.

kgV und ggT

50 min, 6 Aufgaben #0010

Primfaktorzerlegung, größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches nimmt die Hälfte des Blattes ein. Die andere Hälfte sind Anwendungsaufgaben.

Gauß Verfahren

84 min, 7 Aufgaben #1777

Für lineare Gleichungssysteme mit mehr als nur zwei Gleichungen und Unbekannten gibt es einen Algorithmus mit dem man bequemer zur Lösung kommt. Dieser wird hier zunächst gezeigt und dann bei Textaufgaben zur Anwendung gebracht.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum