Einleitung

7 Aufgaben für 7 Tage. Es müssen Klammern aufgelöst, Terme zusammengefasst und vor allem Gleichungen gelöst werden. Dabei treten unter anderem auch mal Brüche, die binomischen Formeln und die pq-Formel mit auf.

29 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Vereinfache die Terme.

$\frac{1}{2}(x-1)^2+3$

$-\frac{2}{3}(x-\frac{1}{2})^2+\frac{1}{12}$

2

Löse erst die Klammern auf und fasse dann zusammen.

$75x-(18x-9y)-(3y-4x)$

$3a(7x-5)+2a(4-3x)$

3

Bestimme x.

$16x+19=5(4+3x)$

$(4x-3)\cdot5-6x=-4(5+9x)$

4

Bestimme x.

$(x-8)(x+14)+1=(x+3)(x+2)$

$(x+2)^2-(x-4)^2=11x-8$

5

Bestimme die Lösungsmenge.

$(8-x)(x+7)=52-x^2$

$(x+ 5)(x-4)=x^2-15$

6

Bestimme die Lösungsmenge.

$(x-3)^2+3(x-9)=7-(x+1)$

$(x+2)^2-4(x-1)=8-(x-2)$

7

Löse mit dem Gleichsetzungsverfahren.

$y = -x+8$
$y = x-2$

$x = 3y+7$
$x=5y+15$

PDF zum Drucken

Weitere Arbeitsblätter

Terme vereinfachen

35 min, 4 Aufgaben #2832

Übungen zum Vereinfachen von Termen durch die vier Grundrechenarten: Addition, Subtraktion, Multiplikation und Division. Unter anderem müssen gleichartige Glieder zusammengefasst und Klammern aufgelöst werden.

Quadratische Funktionen

53 min, 6 Aufgaben #0070

Eine Einführung in quadratische Funktionen. Begonnen wird mit der Normalparabel. Das wird weiter und weiter ausgebaut bis hin zur Scheitelpunktsform und beendet mit der Übung diese in die allgemeine Form zu überführen. Ausblick könnte die quadratische Ergänzung sein.

Quadratische Gleichungen

40 min, 5 Aufgaben #0060

Die Aufgaben führen schrittweise an das Lösen von reinquadratischen Gleichungen verschiedener Formen heran.

Abzählverfahren

54 min, 7 Aufgaben #1650

Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.

Test über Vorkenntnisse zu ganzrationalen Funktionen

31 min, 4 Aufgaben #1515

Originaler Test mit 40 erreichbaren Punkten.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum