Einleitung

7 Aufgaben für 7 Tage. Es müssen Klammern aufgelöst, Terme zusammengefasst und vor allem Gleichungen gelöst werden. Dabei treten unter anderem auch mal Brüche, die binomischen Formeln und die pq-Formel mit auf.

29 Minuten Erklärungen in 7 Aufgaben von Koonys Schule.

Aufgaben

1

Vereinfache die Terme.

$\frac{1}{2}(x-1)^2+3$

$-\frac{2}{3}(x-\frac{1}{2})^2+\frac{1}{12}$

2

Löse erst die Klammern auf und fasse dann zusammen.

$75x-(18x-9y)-(3y-4x)$

$3a(7x-5)+2a(4-3x)$

3

Bestimme x.

$16x+19=5(4+3x)$

$(4x-3)\cdot5-6x=-4(5+9x)$

4

Bestimme x.

$(x-8)(x+14)+1=(x+3)(x+2)$

$(x+2)^2-(x-4)^2=11x-8$

5

Bestimme die Lösungsmenge.

$(8-x)(x+7)=52-x^2$

$(x+ 5)(x-4)=x^2-15$

6

Bestimme die Lösungsmenge.

$(x-3)^2+3(x-9)=7-(x+1)$

$(x+2)^2-4(x-1)=8-(x-2)$

7

Löse mit dem Gleichsetzungsverfahren.

$y = -x+8$
$y = x-2$

$x = 3y+7$
$x=5y+15$

PDF zum Drucken

Weitere Arbeitsblätter

Ikarus Abitur GK Berlin 2016

64 min, 6 Aufgaben #1980

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Quadratische Gleichungen

74 min, 7 Aufgaben #0062

Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.

Arbeit - quadratische Funktionen

39 min, 4 Aufgaben #0069

Eine originale Arbeit mit 46 erreichbaren Punkten zum Thema quadratische Funktionen. Mit dabei: Linearfaktor, Satz von Vieta, Scheitelpunktsform, Optimierungsproblem und Imbiss Bronko.

Lineare Gleichungssysteme lösen

62 min, 7 Aufgaben #3820

Zunächst eine Vorbereitungsaufgabe. Im Anschluss Aufgaben zum Gleichsetzungsverfahren, Einsetzungsverfahren und Additionsverfahren. Danach noch Aufgaben zu den 3 möglichen Fällen: eine Lösung, keine Lösung oder unendlich vieler Lösungen. Am Ende noch Übungen bei denen auch Brüche vorkommen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum