Einleitung

Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden.
Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.

34 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Zeigen Sie, dass die Funktion $ f $ mit $ f(x) = x^2 + 2 $ an jeder Stelle ihres Definitionsbereichs differenzierbar ist.

Hinweis: Bilden Sie den Differenzenquotienten an einer beliebigen Stelle $ x_0 $ und bestimmen Sie $ f'(x_0) $.

2

Bestimmen Sie die Ableitungsfunktion mithilfe der Ableitungsregeln:

$ f(x) = 5x^7 $

$ f(x) = 4x^3 - 3x^2 $

$ f(x) = 0,5x^5 - 2x^3 $

$ f(x) = x^5 + \frac{1}{4}x^4 + \frac{1}{2} x^3 - x $

3

$ f(x) = ax^2 + bx + c $

$ f(x) = 3x^{20} - 2x^2 $

$ f(x) = \frac{1}{5}(x^2 + x + 5) $

$ f(x) = 2x^2(3x+4) $

4

Bestimmen Sie die Stellen $ x_i $ an denen die Graphen der Funktionen $ f $ und $ g $ mit $ f(x) = 0,5x^2 - x^3 + 2 $ und $ g(x) = x^3 - 4 $ den gleichen Anstieg haben.

5

Leiten Sie aus dem dargestellten Graphen der Ableitungsfunktion $ f' $ Aussagen über das Steigungsverhalten der Funktion $ f $ ab.

Welches Verhalten zeigt $ f $ an der Stelle $ x = -2 $?

6

Bestimmen Sie zu den folgenden Ableitungen von Potenzfunktionen jeweils eine zugehörige Ausgangsfunktion:

$ f'(x) = 4x^3 $

$ f'(x) = 8x^7$

$ f'(x) = 0$

$ f'(t) = 10t^4$

7

$ f'(x) = (n-1)x^{n-2}$

$ f'(x) = 15x^4 $

$ f'(b) = 4ab $

$ f'(m) = 2 + a $

8

Zeigen Sie, dass die Funktion $ f $ mit $ f(x) = |x|\cdot(1-x) $ an der Stelle $ x = 0 $ nicht differenzierbar ist.

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis


Weitere Arbeitsblätter

Smartphones Abitur GK Berlin 2016

44 min, 6 Aufgaben #1991

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Ableitungsfunktion und ihre Anwendung

92 min, 12 Aufgaben #1590

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

Analytische Geometrie - Vermischte Aufgaben

71 min, 5 Aufgaben #1919

Vektoren, Geraden und Ebenen im dreidimensionalen Raum. Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.

Anwendungsaufgaben Dreiecksmessung

59 min, 5 Aufgaben #7020

Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.

Test über Vorkenntnisse zu ganzrationalen Funktionen

31 min, 4 Aufgaben #1515

Originaler Test mit 40 erreichbaren Punkten.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum