Einleitung

Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden.
Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.

34 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Zeigen Sie, dass die Funktion $ f $ mit $ f(x) = x^2 + 2 $ an jeder Stelle ihres Definitionsbereichs differenzierbar ist.

Hinweis: Bilden Sie den Differenzenquotienten an einer beliebigen Stelle $ x_0 $ und bestimmen Sie $ f'(x_0) $.

2

Bestimmen Sie die Ableitungsfunktion mithilfe der Ableitungsregeln:

$ f(x) = 5x^7 $

$ f(x) = 4x^3 - 3x^2 $

$ f(x) = 0,5x^5 - 2x^3 $

$ f(x) = x^5 + \frac{1}{4}x^4 + \frac{1}{2} x^3 - x $

3

$ f(x) = ax^2 + bx + c $

$ f(x) = 3x^{20} - 2x^2 $

$ f(x) = \frac{1}{5}(x^2 + x + 5) $

$ f(x) = 2x^2(3x+4) $

4

Bestimmen Sie die Stellen $ x_i $ an denen die Graphen der Funktionen $ f $ und $ g $ mit $ f(x) = 0,5x^2 - x^3 + 2 $ und $ g(x) = x^3 - 4 $ den gleichen Anstieg haben.

5

Leiten Sie aus dem dargestellten Graphen der Ableitungsfunktion $ f' $ Aussagen über das Steigungsverhalten der Funktion $ f $ ab.

Welches Verhalten zeigt $ f $ an der Stelle $ x = -2 $?

Ein Bild aus der Koonys Schule Aufgabe 67992.

6

Bestimmen Sie zu den folgenden Ableitungen von Potenzfunktionen jeweils eine zugehörige Ausgangsfunktion:

$ f'(x) = 4x^3 $

$ f'(x) = 8x^7$

$ f'(x) = 0$

$ f'(t) = 10t^4$

7

$ f'(x) = (n-1)x^{n-2}$

$ f'(x) = 15x^4 $

$ f'(b) = 4ab $

$ f'(m) = 2 + a $

8

Zeigen Sie, dass die Funktion $ f $ mit $ f(x) = |x|\cdot(1-x) $ an der Stelle $ x = 0 $ nicht differenzierbar ist.

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

PDF zum Drucken

Alle Erklärungen sind auch in einer Youtube Playlist vorhanden.

Abitur Analysis


Weitere Arbeitsblätter

Mathematische Kompetenzen - Zufall

15 min, 6 Aufgaben #0008

Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.

Übungen - konstruieren und argumentieren

69 min, 8 Aufgaben #4030

Aufgaben zur Konstruktion von Dreiecken samt Inkreis, Umkreis und Schwerpunkt, sowie besondere Vierecke wie Raute und Drachenviereck. Alle schön verpackt in Textaufgaben.

Strahlensätze *

27 min, 3 Aufgaben #4181

Die Strahlensätze werden zunächst an klassischen Aufgaben mit gegebener Skizze gezeigt und im Anschluss an Textaufgaben gefestigt.

Flächensätze - Vorwissen I

31 min, 7 Aufgaben #0037

Verschiedene grundlegende Aufgaben zu Flächensätze. Der Umgang mit dem für das Thema wichtigen Gleichungen, Flächen- und Winkelberechnungen, sowie erste einfache Aufgaben mit dem Satz des Pythagoras kommen dran.

Ebenen - Übungsaufgaben

52 min, 6 Aufgaben #1933

Verschiedene Übungen zu Ebenen. Ebenen mit Spurgeraden zeichnen, Koordinatengleichungen von Ebenen mit verschiedenen Angaben bestimmen, Schnittgeraden, Abstand Punkt Gerade und Verständnisfragen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum