Einleitung
Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden.
Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.
34 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.
Aufgaben
Zeigen Sie, dass die Funktion $ f $ mit $ f(x) = x^2 + 2 $ an jeder Stelle ihres Definitionsbereichs differenzierbar ist.
Hinweis: Bilden Sie den Differenzenquotienten an einer beliebigen Stelle $ x_0 $ und bestimmen Sie $ f'(x_0) $.
Bestimmen Sie die Ableitungsfunktion mithilfe der Ableitungsregeln:
$ f(x) = 5x^7 $
$ f(x) = 4x^3 - 3x^2 $
$ f(x) = 0,5x^5 - 2x^3 $
$ f(x) = x^5 + \frac{1}{4}x^4 + \frac{1}{2} x^3 - x $
$ f(x) = ax^2 + bx + c $
$ f(x) = 3x^{20} - 2x^2 $
$ f(x) = \frac{1}{5}(x^2 + x + 5) $
$ f(x) = 2x^2(3x+4) $
Bestimmen Sie die Stellen $ x_i $ an denen die Graphen der Funktionen $ f $ und $ g $ mit $ f(x) = 0,5x^2 - x^3 + 2 $ und $ g(x) = x^3 - 4 $ den gleichen Anstieg haben.
Leiten Sie aus dem dargestellten Graphen der Ableitungsfunktion $ f' $ Aussagen über das Steigungsverhalten der Funktion $ f $ ab.
Welches Verhalten zeigt $ f $ an der Stelle $ x = -2 $?

Bestimmen Sie zu den folgenden Ableitungen von Potenzfunktionen jeweils eine zugehörige Ausgangsfunktion:
$ f'(x) = 4x^3 $
$ f'(x) = 8x^7$
$ f'(x) = 0$
$ f'(t) = 10t^4$
Zeigen Sie, dass die Funktion $ f $ mit $ f(x) = |x|\cdot(1-x) $ an der Stelle $ x = 0 $ nicht differenzierbar ist.
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Wochenübung mit Klammern und Gleichungen
29 min, 7 Aufgaben #12347 Aufgaben für 7 Tage. Es müssen Klammern aufgelöst, Terme zusammengefasst und vor allem Gleichungen gelöst werden. Dabei treten unter anderem auch mal Brüche, die binomischen Formeln und die pq-Formel mit auf.
Terme addieren und subtrahieren
43 min, 8 Aufgaben #2828Terme vereinfachen indem man gleichartige Glieder zusammenfasst und ggf. vorher noch ein paar Klammern auflöst. Auch müssen Terme aufgestellt und Zahlenmauern gelöst werden.
Anwendungsaufgaben radioaktiver Zerfall
58 min, 5 Aufgaben #6543Textaufgaben über Stoffe, die exponentiell Zerfallen. Wertetabellen, Prozente und Halbwertszeiten kommen unter anderem vor. Es sind im Wesentlichen verschiedene Aufgaben zu Exponentialfunktionen deren Wachstumsfaktor kleiner als 1 ist.
Hypothesentests - Signifikanztests
68 min, 5 Aufgaben #1740Aufgaben bei denen Nullhypothesen aufgestellt und mit Entscheidungsregeln angenommen oder verworfen werden. Es kommen einseitige und zweiseitige Signifikanztests vor.