Einleitung

Die Vergleichende Arbeit 2015 im Fach Mathematik zum Erwerb der Berufsbildungsreife bzw. des Hauptschulabschlusses.
Bearbeitungszeit: 90 Minuten.
Zugelassene Hilfsmittel: Formelübersicht und wissenschaftlicher nicht grafikfähiger Standard-Taschenrechner.

59 Minuten Erklärungen in 14 Aufgaben von Koonys Schule.

Aufgaben

1

Schreiben Sie 0,75 als Prozentsatz.

2

Berechnen Sie: $ 23\,\mathrm{dm} + 15\,\mathrm{cm} $.

3

Max nimmt sich vor, jeden Tag Mathematik zu üben. Am ersten Tag übt er 10 Minuten. Am zweiten Tag übt er doppelt so lange wie am ersten, am dritten Tag doppelt so lange wie am zweiten Tag.

Wie lange übt er am dritten Tag?

4

Was für ein Viereck ist abgebildet?

Wie groß ist der Winkel $ \beta $?


(Skizze nicht maßstabsgerecht.)

5

Das Rechteck besteht aus 6 gleich großen Quadraten.

Jedes Quadrat hat einen Flächeninhalt von $ 16\,\mathrm{cm^2} .$



Berechnen Sie den Umfang des Rechtecks.

6

Max nimmt sich eine Kugel ohne hinzusehen.

Geben Sie die Wahrscheinlichkeit dafür an, dass diese Kugel dunkel ist.

7

Entscheiden Sie, welche Zuordnung proportional ist.

Lebensalter $ \longrightarrow $ Körpergröße

Eine Portion Pommes Frites kostet 1,20€. Drei Portionen kosten 3€.

Anzahl Bockwürste2410
Kilokalorien4559102275

8

Streifendiagramm

Das Streifendiagramm ist noch nicht fertig. Es soll den Aufbau des menschlichen Körpers zeigen.

HKM

Welcher Anteil bleibt aufgrund der Tabelle insgesamt für Haut und Muskeln übrig?
Berechnen Sie.

Entnehmen Sie den Anteil für Haut und den für Muskeln aus dem Diagramm.

Vervollständigen Sie die Tabelle.

Teil des KörpersAnteil am Körpergewicht
Haut (H)
Knochen (K)12%
Muskeln (M)
Blut (B)9%
Organe (O)12%
Rest (R)17%



Zeichnen Sie in den weißen Bereich des Diagramms die Anteile für Blut (B), Organe (O) und den Rest (R) ein.

Berechnen Sie, wie schwer die Organe eines $ 60\,\mathrm{kg} $ schweren Jugendlichen sind.

9

Kletterpark
Familie Klein besucht einen Kletterpark. Zur Familie gehören: Vater, Mutter, zwei Söhne (12 und 14 Jahre alt) und eine 6-jährige Tochter.

Kletterpark Preise (Einzelticket 2,5 h)
1 Kind (bis 13 Jahre)13 €
1 Kind (14 bis 17 Jahre)15 €
1 Erwachsener18 €
Schnupperkarte (1 Runde)10 €

Für eine Familienkarte bezahlt Familie Klein 61 €.

Berechnen Sie, wie viel Euro die Familie im Vergleich zu den Einzeltickets spart.

Herr Klein und seine Tochter möchten nur die Schnupperkarte nutzen.

Welcher der folgenden Rechenausdrücke ist geeignet das gesparte Geld auszurechnen?
A: $ (13\euro + 18\euro) - 2\cdot 10\euro $
B: $ (13\euro - 10\euro) + (18\euro - 10\euro) $

Der ältere Sohn klettert eine halbe Stunde länger.
Die Zuordnung Zeit $ \rightarrow $ Eintrittspreis soll proportional sein.

Berechnen Sie die Höhe der Nachzahlung.

10

Dreieck

Geben Sie die Koordinaten des Punktes B an.

Verbinden Sie die Punkte A, B und C zu einem Dreieck und messen Sie die Größe des Innenwinkels $ \alpha $ am Eckpunkt A.

Berechnen Sie den Flächeninhalt $ A $ des rechtwinkligen Dreiecks ABC.


Berechnen Sie die Länge der Hypotenuse des Dreiecks ABC.

11

Körper

Ergänzen Sie die Tabelle.

Name des KörpersZylinder
Art der GrundflächeRechteck
Anzahl der Flächen6


Von einem Zylinder ist die Größe der Grundfläche ($ A_G = 43\,\mathrm{cm^2} $) und die Länge der Höhe ($ h = 10\,\mathrm{cm} $) bekannt.

Geben Sie das Volumen des Zylinders an.

Wie groß ist der Radius des Zylinders?

$ 13,7\,\mathrm{cm} $

$ 4,3\,\mathrm{cm} $

$ 3,7\,\mathrm{cm} $

$ 6,6\,\mathrm{cm} $

Berechnen Sie die Oberfläche des Zylinders.

12

Glückskrad

Die Klasse 9a hat für das Schulfest ein Glücksrad mit 8 gleich großen Feldern gebaut. Es gewinnt die Zahl, auf deren Feld der Pfeil zeigt.


Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind und begründen Sie.
(1) Die Wahrscheinlichkeit zu gewinnen ist für jede Zahl gleich groß.
(2) Die Wahrscheinlichkeit, dass die Zahl 8 gewinnt ist größer als die Wahrscheinlichkeit, dass die Zahl 4 gewinnt.

Wie groß ist die Wahrscheinlichkeit, eine gerade Zahl zu drehen?
Geben Sie die Wahrscheinlichkeit als Bruch und in Prozent an.

Berechnen Sie, wie groß die Wahrscheinlichkeit ist, zweimal hintereinander das Feld 4 zu drehen.

13

Kredit

Frau Stein möchte für ein Jahr einen Kredit in Höhe von $ 2200\euro $ aufnehmen. Der Zinssatz beträgt 7 %.

Berechne Sie, wie viel Euro Frau Stein zurückzahlen muss.

Bei einem anderem Geldinstitut müsste sie für dieselbe Kreditsumme $121\euro$ Zinsen im Jahr bezahlen.

Berechnen Sie die Höhe des Zinssatzes.

14

Schokolade

Eine Packung mit zwölf Schokoladentäfelchen enthält fünf Täfelchen mit Marzipanfüllung (M) und sieben Täfelchen Vollmilchschokolade (V). Zwei Schülerinnen nehmen ohne hinzusehen nacheinander je ein Täfelchen aus der Packung.

Zeichen Sie dafür ein Baumdiagramm. Tragen Sie die Ereignisse (M, V) und die zugehörigen Wahrscheinlichkeiten ein.

Berechnen Sie die Wahrscheinlichkeit, dass beide Schülerinnen ein Täfelchen mit Marzipanfüllung (M) ziehen.

PDF zum Drucken

Weitere Arbeitsblätter

Ikarus Abitur GK Berlin 2016

64 min, 6 Aufgaben #1980

Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.

Abzählverfahren

54 min, 7 Aufgaben #1650

Aufgaben zur Kombinatorik mit Sitzplätzen, Fußballturnieren, Silvester und defekten Batterien. Man benötigt die Abzählverfahren (mit oder ohne Reihenfolge, mit oder ohne Wiederholung). Das Lotto-Modell und Gewinnerwartung sind auch dabei.

Abschlussarbeit Klasse 9 ohne Taschenrechner

39 min, 8 Aufgaben #2850

Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Analytische Geometrie - Vermischte Aufgaben

71 min, 5 Aufgaben #1919

Vektoren, Geraden und Ebenen im dreidimensionalen Raum. Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.

Lern­kontrolle Wahr­scheinlich­keits­rechnung

36 min, 4 Aufgaben #7392

Typische Aufgaben der Wahrscheinlichkeitsrechnung für die Sekundarstufe. Mit dabei sind Ergebnismengen, Baumdiagramme und Gewinnerwartung. Natürlich auch Urnen, viele Kugeln und Lotterielose.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum