Einleitung

Vektoren, Geraden und Ebenen im dreidimensionalen Raum.
Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.

71 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.

Aufgaben

1

Gegeben sind die Punkte $\RPUNKT{A}{5}{0}{2}$, $\RPUNKT{B}{3}{1}{4}$ und $\RPUNKT{C}{5}{3}{5}$ im $ \RR^3 $.

Zeigen Sie, dass das Dreieck ABC rechtwinklig und gleichschenklig ist.

Bestimmen Sie den Flächeninhalt $\mathrm{F_{\Delta ABC}}$ des Dreiecks ABC.

Bestimmen Sie einen Punkt S so, dass das Volumen der Pyramide ABCS das Volumen $V = 9\,\mathrm{VE}$ besitzt.

2

Gegeben sind die Punkt $ \RPUNKT{A}{1}{2}{-3} $, $ \RPUNKT{B}{3}{5}{3} $ und $ \RPUNKT{C}{9}{7}{0} $ im $\RR^3$.

Zeigen Sie, dass sich das Dreieck ABC zu einem Quadrat ABCD ergänzen lässt. Bestimmen Sie die Koordinaten von D und den Flächeninhalt dieses Quadrates.

Erweitern Sie das Quadrat ABCD zu einem Würfel ABCDEFGH. Bestimmen Sie die Koordinaten der Eckpunkte E, F, G und H sowie das Volumen dieses Würfels.

3

Gegeben sind die Punkte $ \RPUNKT{A}{-3}{-2}{4} $, $ \RPUNKT{B}{5}{4}{0} $ und $ \RPUNKT{P}{2}{5}{10} $ im $ \RR^3 $.

Zeigen Sie, dass die drei Punkte A, B und P nicht auf einer Geraden liegen.

Bestimmen Sie den Abstand des Punktes P von der Geraden AB.

4

Gegeben sind die Punkte $ \RPUNKT{A}{1}{3}{4} $, $ \RPUNKT{B}{4}{6}{1} $ und $ \RPUNKT{C}{-2}{0}{-5} $ im $ \RR^3 $.

Bestimmen Sie die Größe des Winkels $ \alpha = \sphericalangle $BAC im Dreieck ABC.

$ \mathrm{M}_a $ ist die Seitenmitte der Seite $a$ im Dreieck ABC. Bestimmen Sie die Koordinaten von $ \mathrm{M_a} $ und die Länge der Seitenhalbierenden $ s_a $ im Dreieck ABC.

Bestimmen Sie die Koordinaten des Fußpunktes F der Höhe $ h_c $ im Dreieck ABC. In welchem Verhältnis teilt F die Strecke [AB]?

Begründen Sie, dass $ \RPUNKT{S}{1}{3}{1} $ der Schnittpunkt von $s_a$ und $h_c$ ist.

Wie hätte man die Koordinaten des Schnittpunktes von $s_a$ und $h_c$ rechnerisch ermitteln können?

5

Gegeben sind die Punkte $ \RPUNKT{A}{1}{2}{3} $, $ \RPUNKT{B}{3}{0}{4} $, $ \RPUNKT{C}{5}{1}{2} $ und $ \RPUNKT{M}{2}{4}{5} $ im $ \RR^3 $.

Berechnen Sie die Größe der Winkel $\sphericalangle$BAM und $\sphericalangle$CAM und $\sphericalangle$BAC.

Begründen Sie, dass der Punkt M nicht in der durch A, B und C festgelegten Ebene E liegt. Welchen Abstand hat M von dieser Ebene E?

Die Kugel k(M, r=5) schneidet die Ebene E in einem Kreis mit dem Radius $\rho$. Berechnen Sie die Größe von $\rho$.

PDF zum Drucken

Weitere Arbeitsblätter

Übungsaufgaben zur Stochastik

30 min, 6 Aufgaben #1654

Die ersten fünf Aufgaben fragen danach, wie viele Elemente oder Möglichkeiten es gibt, und sind damit klassische Aufgaben zu Abzählverfahren (Kombinatorik). Die letzte Aufgabe beschäftigt sich mit Baumdiagrammen und Bernoulli-Ketten.

Kleine vermischte Übungen - Klasse 8

50 min, 12 Aufgaben #5200

Bunt gemischte Textaufgaben zu verschiedenen Themen der 8. Klasse und darüber hinaus. Etwas zum Knobeln für Schüler am Anfang des Schuljahres.

Stammfunktionen und Flächeninhalte

76 min, 8 Aufgaben #8010

Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)

Rechnen mit Dezimalbrüchen

58 min, 10 Aufgaben #0670

Viele Aufgaben zu den vier Hauptrechenarten mit Dezimalbrüchen. Schriftlich muss Plus, Minus, Mal und Durch benutzt werden.

Berechnungen an Körpern

62 min, 6 Aufgaben #9598

Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum