Einleitung
Vektoren, Geraden und Ebenen im dreidimensionalen Raum.
Die Aufgaben sind bunt gemischt. Angefangen bei Winkeln und Flächeninhalten über fehlende Koordinaten hin zu Abstandsberechnungen, Seitenverhältnissen, Ebenen und sogar Kugeln.
71 Minuten Erklärungen in 5 Aufgaben von Koonys Schule.
Aufgaben
Gegeben sind die Punkte $\RPUNKT{A}{5}{0}{2}$, $\RPUNKT{B}{3}{1}{4}$ und $\RPUNKT{C}{5}{3}{5}$ im $ \RR^3 $.
Zeigen Sie, dass das Dreieck ABC rechtwinklig und gleichschenklig ist.
Bestimmen Sie den Flächeninhalt $\mathrm{F_{\Delta ABC}}$ des Dreiecks ABC.
Bestimmen Sie einen Punkt S so, dass das Volumen der Pyramide ABCS das Volumen $V = 9\,\mathrm{VE}$ besitzt.
Gegeben sind die Punkt $ \RPUNKT{A}{1}{2}{-3} $, $ \RPUNKT{B}{3}{5}{3} $ und $ \RPUNKT{C}{9}{7}{0} $ im $\RR^3$.
Zeigen Sie, dass sich das Dreieck ABC zu einem Quadrat ABCD ergänzen lässt. Bestimmen Sie die Koordinaten von D und den Flächeninhalt dieses Quadrates.
Erweitern Sie das Quadrat ABCD zu einem Würfel ABCDEFGH. Bestimmen Sie die Koordinaten der Eckpunkte E, F, G und H sowie das Volumen dieses Würfels.
Gegeben sind die Punkte $ \RPUNKT{A}{-3}{-2}{4} $, $ \RPUNKT{B}{5}{4}{0} $ und $ \RPUNKT{P}{2}{5}{10} $ im $ \RR^3 $.
Zeigen Sie, dass die drei Punkte A, B und P nicht auf einer Geraden liegen.
Bestimmen Sie den Abstand des Punktes P von der Geraden AB.
Gegeben sind die Punkte $ \RPUNKT{A}{1}{3}{4} $, $ \RPUNKT{B}{4}{6}{1} $ und $ \RPUNKT{C}{-2}{0}{-5} $ im $ \RR^3 $.
Bestimmen Sie die Größe des Winkels $ \alpha = \sphericalangle $BAC im Dreieck ABC.
$ \mathrm{M}_a $ ist die Seitenmitte der Seite $a$ im Dreieck ABC. Bestimmen Sie die Koordinaten von $ \mathrm{M_a} $ und die Länge der Seitenhalbierenden $ s_a $ im Dreieck ABC.
Bestimmen Sie die Koordinaten des Fußpunktes F der Höhe $ h_c $ im Dreieck ABC. In welchem Verhältnis teilt F die Strecke [AB]?
Begründen Sie, dass $ \RPUNKT{S}{1}{3}{1} $ der Schnittpunkt von $s_a$ und $h_c$ ist.
Wie hätte man die Koordinaten des Schnittpunktes von $s_a$ und $h_c$ rechnerisch ermitteln können?
Gegeben sind die Punkte $ \RPUNKT{A}{1}{2}{3} $, $ \RPUNKT{B}{3}{0}{4} $, $ \RPUNKT{C}{5}{1}{2} $ und $ \RPUNKT{M}{2}{4}{5} $ im $ \RR^3 $.
Berechnen Sie die Größe der Winkel $\sphericalangle$BAM und $\sphericalangle$CAM und $\sphericalangle$BAC.
Begründen Sie, dass der Punkt M nicht in der durch A, B und C festgelegten Ebene E liegt. Welchen Abstand hat M von dieser Ebene E?
Die Kugel k(M, r=5) schneidet die Ebene E in einem Kreis mit dem Radius $\rho$. Berechnen Sie die Größe von $\rho$.
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Hemden mit Mängeln Abitur LK Berlin 2011
32 min, 6 Aufgaben #1720Original Abiturprüfung für den Leistungskurs aus Berlin. Die Aufgabe dreht sich rund um Hypothesentests. Kumulierte Binomialverteilung und Standardnormalverteilung, sowie gesunder Menschenverstand werden gebraucht.
Klassenarbeit Terme und Gleichungen
27 min, 4 Aufgaben #3749Klassenarbeit einer 8. Klasse auf einem Berliner Gymnasium. Es müssen Terme vereinfacht und Gleichungen gelöst werden. Dabei müssen Klammern aufgelöst, binomische Formeln angewendet und Gleichungen aus Texten aufgestellt werden.
Anwendungsaufgaben Dreiecksmessung
59 min, 5 Aufgaben #7020Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.
Bernoulli-Ketten
43 min, 4 Aufgaben #1700Es gibt vier grundlegende Aufgabentypen bei Bernoulli-Ketten. Diese werden hier einfach straightforward geübt.