Einleitung
47 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Bestimme $x$, $\alpha$, $c$ und $\gamma$.
$\frac{x}{\sin(21^\circ)} = \frac{4,4}{\sin(28^\circ)}$
$\frac{3,7}{\sin(\alpha)} = \frac{2,3}{\sin(35^\circ)}$
$c^2 = 2^2 + 3^2 - 2\cdot 2\cdot 3\cdot \cos(66^\circ)$
$4^2 = 2^2 + 3^2 - 2\cdot 2\cdot 3 \cdot\cos(\gamma)$
Berechne aus den gegebenen Stücken des Dreiecks ABC die übrigen.
$\beta = 44^\circ$
$\gamma = 17^\circ$
$c = 17,9\,\mathrm{cm}$
$a = 12,9\,\mathrm{m}$
$b=6,6\,\mathrm{m}$
$\alpha = 50^\circ$
$a = 3\,\mathrm{dm}$
$b = 8,9\,\mathrm{dm}$
$\gamma = 122^\circ$
Ein dreieckiges Grundstück hat die Seitenlängen 100m, 73m und 121,5m.
Berechne die Maße der Winkel in den Grundstücksecken.
Zwei Kräfte von 168 N und 232 N greifen am gleichen Angriffspunkt an und bilden miteinander einen Winkel von 113°.
Berechne die resultierende Kraft.
Zwei Autos mit den Geschwindigkeiten $48\,\frac{km}{h}$ und $84\,\frac{km}{h}$ fahren gleichzeitig von einer Straßengabelung ($31^\circ$) geradlinig weg.
Wie weit kommen die beiden Autos jeweils in 17 Minuten?
Wie weit sind sie dann voneinander entfernt?
In der Ferne sieht Frau Winter ein Haus und möchte dessen Höhe bestimmen ohne sich viel anzustrengen. Sie misst dazu wie weit sie ihren Kopf nach oben neigen muss, um geradezu auf die Hausspitze zu blicken, geht dann ein paar Meter zurück und misst nochmal.
Zuerst misst Frau Winter einen Winkel von 22,3°.
Nachdem sie 35 Meter zurück gegangen ist, misst sie 12,2°.
Wie hoch ist das Haus?
(Körpergröße und eventuelle Unebenheiten des Bodens ignorieren.)
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Mathematische Kompetenzen - Zufall
15 min, 6 Aufgaben #0008Ein Sachverhalt aus dem Themengebiet Daten und Zufall (Leitidee 5) wird in verschiedene Aufgaben gepackt, die jeweils einen Schwerpunkt bezüglich der mathematischen Kompetenzen besitzen.
Prozent- und Zinsrechnung | MSA
18 min, 2 Aufgaben #5102Zwei originale Aufgaben aus Abschlussprüfungen für den mittleren Schulabschluss (MSA) aus Berlin. Die Rechnungen sind an sich einfach. Die Schwierigkeit besteht vor allem darin die Rechnungen aus den Textaufgaben zu extrahieren.
Übersicht e-Funktionen ableiten
69 min, 7 Aufgaben #6600Schritt für Schritt werden die verschiedenen Ableitungsregeln bei e-Funktionen gezeigt und es gibt Aufgaben mit Kombinationen dieser Regeln (Konstantenregel, Faktorregel, Produktregel, Kettenregel). Das Arbeitsblatt endet mit einer typischen Kurvendiskussion über eine e-Funktion.
Klausurvorbereitung - Analysis - NRW
15 min, 3 Aufgaben #1580Drei kleine verschiedene Aufgaben zur Differentialrechnung. Man muss Sachen berechnen und begründete Entscheidungen geben. Dafür werden Potenzfunktionen 3. Grades mit Nullstellen, Tangenten, Ableitungen und Verschiebungen von Funktionen benutzt.
Lineare Gleichungen
58 min, 5 Aufgaben #3738Einführung in das Umstellen von linearen Gleichungen. Die Aufgaben beginnen ganz einfach und werden dann nach und nach schwerer. Am Ende hat man gelernt: Klammern auflösen, links und rechts zusammenfassen, alles mit x auf die eine und alles ohne x auf die andere Seite. Zum Schluss noch durch die Zahl vor dem x teilen und fertig ist man.