Einleitung
47 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Bestimme $x$, $\alpha$, $c$ und $\gamma$.
$\frac{x}{\sin(21^\circ)} = \frac{4,4}{\sin(28^\circ)}$
$\frac{3,7}{\sin(\alpha)} = \frac{2,3}{\sin(35^\circ)}$
$c^2 = 2^2 + 3^2 - 2\cdot 2\cdot 3\cdot \cos(66^\circ)$
$4^2 = 2^2 + 3^2 - 2\cdot 2\cdot 3 \cdot\cos(\gamma)$
Berechne aus den gegebenen Stücken des Dreiecks ABC die übrigen.
$\beta = 44^\circ$
$\gamma = 17^\circ$
$c = 17,9\,\mathrm{cm}$
$a = 12,9\,\mathrm{m}$
$b=6,6\,\mathrm{m}$
$\alpha = 50^\circ$
$a = 3\,\mathrm{dm}$
$b = 8,9\,\mathrm{dm}$
$\gamma = 122^\circ$
Ein dreieckiges Grundstück hat die Seitenlängen 100m, 73m und 121,5m.
Berechne die Maße der Winkel in den Grundstücksecken.
Zwei Kräfte von 168 N und 232 N greifen am gleichen Angriffspunkt an und bilden miteinander einen Winkel von 113°.
Berechne die resultierende Kraft.
Zwei Autos mit den Geschwindigkeiten $48\,\frac{km}{h}$ und $84\,\frac{km}{h}$ fahren gleichzeitig von einer Straßengabelung ($31^\circ$) geradlinig weg.
Wie weit kommen die beiden Autos jeweils in 17 Minuten?
Wie weit sind sie dann voneinander entfernt?
In der Ferne sieht Frau Winter ein Haus und möchte dessen Höhe bestimmen ohne sich viel anzustrengen. Sie misst dazu wie weit sie ihren Kopf nach oben neigen muss, um geradezu auf die Hausspitze zu blicken, geht dann ein paar Meter zurück und misst nochmal.
Zuerst misst Frau Winter einen Winkel von 22,3°.
Nachdem sie 35 Meter zurück gegangen ist, misst sie 12,2°.
Wie hoch ist das Haus?
(Körpergröße und eventuelle Unebenheiten des Bodens ignorieren.)
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Weitere Arbeitsblätter
Ebenengleichungen
22 min, 4 Aufgaben #1925Überblick aller drei Arten von Ebenengleichungen und wie man jeweils von einer Form in die andere kommt. Paramatergleichung, Normalengleichung und Koordinantengleichungen werden alle untereinander umgeformt.
Übungen zu kombinatorischen Abzählverfahren
29 min, 8 Aufgaben #1648Ob mit oder ohne Reihenfolge und mit oder ohne Wiederholung: die Frage, die sich stellt, ist immer die gleiche: wie viele Möglichkeiten gibt es? Bei den Aufgaben kommt man noch häufig durch Abzählen zur Lösung.
Smartphones Abitur GK Berlin 2016
44 min, 6 Aufgaben #1991Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.
Anwendungsaufgaben Dreiecksmessung
59 min, 5 Aufgaben #7020Vier Aufgabentypen zu Sinus, Kosinus und Tangens an nicht rechtwinkligen Dreiecken. Bei den Aufgaben hat man zwar beliebige Dreiecke vorliegen, aber kommt ganz ohne Sinussatz und Kosinussatz aus.
Ikarus Abitur GK Berlin 2016
64 min, 6 Aufgaben #1980Abituraufgabe zur analytischen Geometrie für den Grundkurs mit 30 erreichbaren Bewertungseinheiten aus Berlin 2016.