Einleitung
Für sechs Tage gibt es täglich 4 Aufgaben. Eine Bruchgleichung, eine biquadratische Gleichung, eine Gleichung 3. Grades ohne Absolutglied und eine zum Knobeln.
89 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Löse die Gleichungen.
$x^3+8x^2-9x=0$
$(7x^2+14x+7)=24x(x+1)^2$
$(x^2-14)^2 = 5(6x^2-49)$
$x-\frac{4}{x}=0$
Löse die Gleichungen.
$x^3-x^2-56x=0$
$(x^3-2x^2+x)=11x^2(x-1)^2$
$(x^2+25)^2 = 111x^2-275$
$\frac{x}{x-1}=3x$
Löse die Gleichungen.
$2x^3-5x^2-42x=0$
$(25x^2+10x+1)^2 + 5x(5x+1)^3 = (1+5x)^3$
$(6x^2-11)(6x^2+11)=5(101x^2-181)$
$\frac{x-9}{x+1}=x$
Löse die Gleichungen.
$3u^3-4u^2-4u=0$
$(9x^2-6x+1)(1-3x)=(3x-1)^2$
$(2x^2-11)^2-6=29(x^2-1)$
$\frac{3x+4}{3}+\frac{18}{2-3x}=2$
Löse die Gleichungen.
$4z^3+9z^2+2z=0$
$(9+25x^2+30x)+(5-8x)(5x+3)^2 = 0$
$x^4-11x^2+18=0$
$\frac{x+3}{x}+\frac{x}{x-2}=5$
Löse die Gleichungen.
$18x^4 + 39x^3-7x^2=0$
$(x+2)^2(3x-5)=(x-2)(2+x)$
$5x^4-9x^2+2 = 0$
$\frac{7-x}{x}-\frac{x}{x+8}=5$
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Alle Erklärungen sind auch in einer
Weitere Arbeitsblätter
Ableitungsfunktion
34 min, 8 Aufgaben #1588Der Differenzenquotient muss gebildet und Funktionen abgeleitet werden. Darüber hinaus muss eine Ausgangsfunktion gezeichnet und Funktionsgleichungen von Ausgangsfunktionen gebildet werden. Eine Aufgabe über die Differenzierbarkeit einer Betragsfunktion an einer bestimmten Stelle ist auch dabei.
Stammfunktionen und Flächeninhalte
76 min, 8 Aufgaben #8010Wie für das Thema üblich werden zunächst einfache Polynomfunktionen integriert und dann schwierigere Funktionen bei denen zunächst Potenz- und Wurzelgesetze angewendet werden müssen. Der Aufgabentyp mit gegebener Ableitung und einem Punkt die Ausgangsfunktion zu bestimmen ist auch dabei und die zweite Hälfte der Aufgaben behandelt die Flächenberechnung zwischen Graph und x-Achse. Dabei müssen zuerst die Nullstellen bestimmt werden. :)
Klassenarbeit - Wurzelgesetze und Potenzgesetze
24 min, 6 Aufgaben #0995Originale Arbeit mit 36 erreichbaren Punkten.
Übungen zur Differenzialrechnung
98 min, 8 Aufgaben #1560Typische Aufgaben zur Differenzialrechnung. Also Ableiten, Nullstellen berechnen, Graphen skizzieren, Tangentengleichungen und Schnittwinkel berechnen und natürlich Hoch- und Tiefpunkte bestimmen.