Einleitung
Für sechs Tage gibt es täglich 4 Aufgaben. Eine Bruchgleichung, eine biquadratische Gleichung, eine Gleichung 3. Grades ohne Absolutglied und eine zum Knobeln.
89 Minuten Erklärungen in 6 Aufgaben von Koonys Schule.
Aufgaben
Löse die Gleichungen.
$x^3+8x^2-9x=0$
$(7x^2+14x+7)=24x(x+1)^2$
$(x^2-14)^2 = 5(6x^2-49)$
$x-\frac{4}{x}=0$
Löse die Gleichungen.
$x^3-x^2-56x=0$
$(x^3-2x^2+x)=11x^2(x-1)^2$
$(x^2+25)^2 = 111x^2-275$
$\frac{x}{x-1}=3x$
Löse die Gleichungen.
$2x^3-5x^2-42x=0$
$(25x^2+10x+1)^2 + 5x(5x+1)^3 = (1+5x)^3$
$(6x^2-11)(6x^2+11)=5(101x^2-181)$
$\frac{x-9}{x+1}=x$
Löse die Gleichungen.
$3u^3-4u^2-4u=0$
$(9x^2-6x+1)(1-3x)=(3x-1)^2$
$(2x^2-11)^2-6=29(x^2-1)$
$\frac{3x+4}{3}+\frac{18}{2-3x}=2$
Löse die Gleichungen.
$4z^3+9z^2+2z=0$
$(9+25x^2+30x)+(5-8x)(5x+3)^2 = 0$
$x^4-11x^2+18=0$
$\frac{x+3}{x}+\frac{x}{x-2}=5$
Löse die Gleichungen.
$18x^4 + 39x^3-7x^2=0$
$(x+2)^2(3x-5)=(x-2)(2+x)$
$5x^4-9x^2+2 = 0$
$\frac{7-x}{x}-\frac{x}{x+8}=5$
Alle Erklärungen sind auch in einer
PDF zum Drucken
Lösungs-PDF
Alle Erklärungen sind auch in einer
Weitere Arbeitsblätter
Strahlensätze **
54 min, 6 Aufgaben #4182Drei Schenkel, verdrehte Skizzen, Erbsen und der Mond sowie Bergspitzen. Das Prinzip ist das Gleiche, aber die Schwierigkeit ist doch um einiges größer als sonst. Das nächste Level an Strahlensatzaufgaben sozusagen.
Übungen - konstruieren und argumentieren
69 min, 8 Aufgaben #4030Aufgaben zur Konstruktion von Dreiecken samt Inkreis, Umkreis und Schwerpunkt, sowie besondere Vierecke wie Raute und Drachenviereck. Alle schön verpackt in Textaufgaben.
Dezimalbrüche
85 min, 7 Aufgaben #1010In verschiedenen Aufgaben werden gebrochene Zahlen zwischen Dezimalzahlen und echten Brüchen hin und her umgewandelt.
Ableitungsfunktion und ihre Anwendung
92 min, 12 Aufgaben #1590Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.
Klammern auflösen
35 min, 8 Aufgaben #3336Das Vereinfachen von Termen mit Klammern wird Stück für Stück gezeigt. Mit dabei sind Minusklammern, das einfache und das doppelte Distributivgesetz. Nach den Aufgaben ist man fachlich soweit sich als nächstes an die binomischen Formeln vagen zu können.