Einleitung

Anwendungsaufgaben zu Bernoulli-Ketten. Die ersten zwei Aufgaben fragen die grundlegenden Berechnungen ab. Die dritte ist vom Typ mindestens-mindestens und die vierte zeichnet sich durch eine äußert schwierige Aufgabenstellung aus. Ein kühler Kopf ist hier gefragt.

37 Minuten Erklärungen in 4 Aufgaben von Koonys Schule.

Aufgaben

1

Ein Multiple-Choice Test enthält 19 Fragen mit je 4 Antwortmöglichkeiten von denen jeweils genau eine Antwort richtig ist. Bei 10 richtigen Antworten gilt der Test als bestanden.


Max hat nicht gelernt und fühlt sich nicht gut. Er entscheidet sich dazu alle Antworten zufällig anzukreuzen ohne sich die Fragen durchzulesen, damit er schnell nach Hause kann.


Wie hoch ist die Wahrscheinlichkeit, dass er ...

... besteht?

... durchfällt?

... alles falsch ankreuzt?

... alles richtig ankreuzt?

... mit 10 Punkten besteht?

... mit 9 Punkten durchfällt?

2

Ein Glücksrad besteht aus 5 gleich großen Sektoren von denen 2 als Treffer gelten und die restlichen als Nieten. Das Glücksrad werde 11 mal gedreht.


Wie hoch ist die Wahrscheinlichkeit, dass ...

... mehr Treffer als Nieten gedreht werden?

... beim letzten mal der 4. Treffer kommt?

... mindestens 2 und höchstens 9 Treffer gedreht werden?

... mehr als 3 Treffer gedreht werden?

... mindestens 3 Treffer gedreht werden?

3

Wie oft muss man ein Bernoulli-Experiment durchführen, wenn die Wahrscheinlichkeit größer als 72 % sein soll, dass ein Ergebnis der Wahrscheinlichkeit 46 % mindestens einmal eintritt?

4

Ein Taxistand ist für 10 Taxen vorgesehen. Erfahrungsgemäß hält sich ein Wagen durchschnittlich 12 min pro Stunde am Standplatz auf.

Mit welcher Wahrscheinlichkeit findet eine Taxe bei 3 Standplätzen einen Platz?

Welche Anzahl von Taxen wird am häufigsten am Standplatz anzutreffen sein?

Wie viele Standplätze müssten vorhanden sein, damit mit 90 % Wahrscheinlichkeit stets ein Platz zu finden ist?

PDF zum Drucken

Weitere Arbeitsblätter

Klassenarbeit - Lineare Funktionen - Geradengleichungen

28 min, 5 Aufgaben #3810

Originale Klassenarbeit einer 8. Klasse aus Berlin mit 48 erreichbaren Punkten. Vorhanden sind die Zwei-Punkte-Gleichung, Punktprüfung, diverse Verständnisaufgaben zu Steigung und Achsenabschnitt und eine Anwendungsaufgabe.

Diagnosetest konstruieren und argumentieren

36 min, 5 Aufgaben #4025

Aufgaben zur Konstruktion von Dreiecken mit Hilfe der Kongruenzsätze. Außerdem kommen Innenwinkelsatz, ein gleichschenkliges Trapez und die Konstruktion des Umkreises eines Dreiecks im Koordinatensystem vor.

Abschlussarbeit Klasse 9 ohne Taschenrechner

39 min, 8 Aufgaben #2850

Aufgaben quer durch die 9. Klasse für Profis. Ohne Taschenrechner knifflige Terme berechnen. Außerdem Prozentrechnung, Flächeninhalte, Gleichungen umstellen, Funktionen, Textgleichungen, Strahlensätze und Wahrscheinlichkeiten. Auch als Vorbereitung auf den mittleren Schulabschluss (MSA) geeignet.

Random Title

0 min, 0 Aufgaben #SEXY

test

Sinus - Kosinus - Tangens

41 min, 6 Aufgaben #7000

Sinus, Kosinus und Tangens von leicht bis schwer. Zunächst Aufgaben mit den Gleichungen und all ihren Varianten. Danach Standard-Aufgaben an rechtwinkligen Dreiecken und die zweite Hälfte sind Textaufgaben bei denen das gleiche noch einmal drankommt mit dem gewissen Etwas, das anspruchsvolle Aufgaben ausmacht.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum