Einleitung

Terme vereinfachen indem man gleichartige Glieder zusammenfasst und ggf. vorher noch ein paar Klammern auflöst.
Auch müssen Terme aufgestellt und Zahlenmauern gelöst werden.

43 Minuten Erklärungen in 8 Aufgaben von Koonys Schule.

Aufgaben

1

Vereinfache die Terme so weit wie möglich.

$ 3x+5x-4x $

$ 5a - 2a + a $

$ 4z^2 - 3z^2 + z^2 + 3z^2 $

$ 2,5xy + 1,5xy - 3xy $

$ -a^2z + 3a^2z $

$ 1,2xy^2 + 2,2y^2x - 1,5xy^2 + y^2x $

2

$ 3x+5y+x-7y-8y+11x $

$ 5xy - 2yz + 10xy - 2xz - 2yz $

$ 4 + 3a + 37 + 22,5a - 7,2 $

$ \frac{e^2}{2} + \frac{3f}{4} - \frac{1}{4}e^2 + 0,25f $

3

$ \left(\frac{1}{2}\right)^2x + 2^3y - \frac{5}{4}x + 2y - x $

$ 0,5^2ab - 0,25ab^2 + \frac{1}{4}ab^2 - ab $

$ 0,5a^2y + \frac{2}{6}a^2y^2 - \frac{1}{2}a\cdot ay - 0,5a^2y^2 $

$ \frac{1}{2}xy + \frac{1}{3}xz + 1\frac{1}{2}xy - \frac{4}{3}xz - \frac{5}{2}xy $

4

Löse die Klammern auf und fasse so weit wie möglich zusammen.

$ 8x + (3y+2x) $

$ a+(3a-b) $

$ -5z+(-3z+5) $

$ 7e+(-e-f) $

$ -8x+(3y+(-2x)) $

$ 2z+(5-(-2z)) $

5

$ 3s-(s+t) $

$ 12y-(12x-6y) $

$ -a-(-ab + 3a) $

6

$ -6x-(-2x-3y) $

$ 17-(15b+(-3)) $

$ -s-(-r-(-s)) $

$ (3a+2b)+5a $

$ -(7x-5y)-23y $

$ -(-e-f) $

7

Stelle einen Term zur Berechnung des Umfangs der Figur auf. Vereinfache den Term so weit wie möglich.

Ein Bild aus der Koonys Schule Aufgabe 34ff8.

Ein Bild aus der Koonys Schule Aufgabe 34ff8.

8

Übertrage die Zahlenmauern in dein Heft und vervollständige sie. (Addition)

Ein Bild aus der Koonys Schule Aufgabe b2a9c.

Ein Bild aus der Koonys Schule Aufgabe b2a9c.

PDF zum Drucken

Weitere Arbeitsblätter

Berechnungen an Körpern

62 min, 6 Aufgaben #9598

Zunächst müssen Skizzen von Zylinder, Kegel, Pyramide und Kugel angefertigt werden. Anschließend gibt es einfache Aufgaben zu Oberfläche und Volumen wobei nur gegebene Werte in entsprechende Formeln eingesetzt werden müssen. Danach variieren die gegebenen Werte, sodass die Formeln umgestellt werden müssen.

Hypothesentests - Signifikanztests

68 min, 5 Aufgaben #1740

Aufgaben bei denen Nullhypothesen aufgestellt und mit Entscheidungsregeln angenommen oder verworfen werden. Es kommen einseitige und zweiseitige Signifikanztests vor.

Quadratische Gleichungen

74 min, 7 Aufgaben #0062

Es werden zunächst quadratische Gleichungen sowohl über die Scheitelpunktsform als auch mit der pq-Formel gelöst. Im Anschluss gibt es Textaufgaben bei denen das Wissen benötigt wird.

Random Title

0 min, 0 Aufgaben #SEXY

test

Ableitungsfunktion und ihre Anwendung

92 min, 12 Aufgaben #1590

Aus einer Funktion macht man eine andere Funktion, die sogenannte Ableitungsfunktion. Die Aufgaben beschäftigen sich damit, wie das gemacht wird, und was man darüber hinaus mit der Ableitungsfunktion machen kann. Zum Beispiel Steigungswinkel, Schnittwinkel, Tangentengleichungen oder Berührpunkte bestimmen.

Die Idee

Kontakt

kontakt@koonys.schule

+49 163 529 59 15

© Christian Schmidt - Impressum